GitHub - sunsmarterjie/yolov12 at Seg (original) (raw)
YOLOv12
YOLOv12: Attention-Centric Real-Time Object Detectors
Yunjie Tian1, Qixiang Ye2, David Doermann1
1 University at Buffalo, SUNY, 2 University of Chinese Academy of Sciences.
Main Results
Model | size(pixels) | mAPbox50-95 | mAPmask50-95 | SpeedT4 TensorRT10 | params(M) | FLOPs(B) |
---|---|---|---|---|---|---|
YOLOv12n-seg | 640 | 39.9 | 32.8 | 1.84 | 2.8 | 9.9 |
YOLOv12s-seg | 640 | 47.5 | 38.6 | 2.84 | 9.8 | 33.4 |
YOLOv12m-seg | 640 | 52.4 | 42.3 | 6.27 | 21.9 | 115.1 |
YOLOv12l-seg | 640 | 54.0 | 43.2 | 7.61 | 28.8 | 137.7 |
YOLOv12x-seg | 640 | 55.2 | 44.2 | 15.43 | 64.5 | 308.7 |
Installation
wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl
conda create -n yolov12 python=3.11
conda activate yolov12
pip install -r requirements.txt
pip install -e .
Validation
yolov12n-seg yolov12s-seg yolov12m-seg yolov12l-seg yolov12x-seg
from ultralytics import YOLO
model = YOLO('yolov12{n/s/m/l/x}-seg.pt') model.val(data='coco.yaml', save_json=True)
Training
from ultralytics import YOLO
model = YOLO('yolov12n-seg.yaml')
Train the model
results = model.train( data='coco.yaml', epochs=600, batch=128, imgsz=640, scale=0.5, # S:0.9; M:0.9; L:0.9; X:0.9 mosaic=1.0, mixup=0.0, # S:0.05; M:0.15; L:0.15; X:0.2 copy_paste=0.1, # S:0.15; M:0.4; L:0.5; X:0.6 device="0,1,2,3", )
Evaluate model performance on the validation set
metrics = model.val()
Perform object detection on an image
results = model("path/to/image.jpg") results[0].show()
Prediction
from ultralytics import YOLO
model = YOLO('yolov12{n/s/m/l/x}-seg.pt') model.predict()
Export
from ultralytics import YOLO
model = YOLO('yolov12{n/s/m/l/x}-seg.pt') model.export(format="engine", half=True) # or format="onnx"
Demo
python app.py
# Please visit http://127.0.0.1:7860
Acknowledgement
The code is based on ultralytics. Thanks for their excellent work!
Citation
@article{tian2025yolov12, title={YOLOv12: Attention-Centric Real-Time Object Detectors}, author={Tian, Yunjie and Ye, Qixiang and Doermann, David}, journal={arXiv preprint arXiv:2502.12524}, year={2025} }