GitHub - waldronlab/TENxIO: Bioconductor interface to 10X files (original) (raw)
Introduction
TENxIO
allows users to import 10X pipeline files into known Bioconductor classes. The package is not comprehensive, there are file types that are not supported. For Visium datasets, we direct users to the VisiumIO
package on Bioconductor. TENxIO consolidates functionality from DropletUtils
. If you would like a file format to be supported, open an issue at https://github.com/waldronlab/TENxIO.
Supported Formats
Extension | Class | Imported as |
---|---|---|
.h5 | TENxH5 | SingleCellExperiment w/ TENxMatrix |
.mtx / .mtx.gz | TENxMTX | SummarizedExperiment w/ dgCMatrix |
.tar.gz | TENxFileList | SingleCellExperiment w/ dgCMatrix |
peak_annotation.tsv | TENxPeaks | GRanges |
fragments.tsv.gz | TENxFragments | RaggedExperiment |
.tsv / .tsv.gz | TENxTSV | tibble |
spatial.tar.gz | TENxSpatialList | inter. DataFrame list |
Tested 10X Products
We have tested these functions with some datasets from 10x Genomics including those from:
- Single Cell Gene Expression
- Single Cell ATAC
- Single Cell Multiome ATAC + Gene Expression
- Spatial Gene Expression
Note. That extensive testing has not been performed and the codebase may require some adaptation to ensure compatibility with all pipeline outputs.
Bioconductor implementations
We are aware of existing functionality in both DropletUtils
andSpatialExperiment
. We are working with the authors of those packages to cover the use cases in both those packages and possibly port I/O functionality into TENxIO
. We are using long tests and theDropletTestFiles
package to cover example datasets on ExperimentHub
, if you would like to know more, see the longtests
directory on GitHub.
Installation
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
BiocManager::install("waldronlab/TENxIO")
Load the package
Description
TENxIO
offers an set of classes that allow users to easily work with files typically obtained from the 10X Genomics website. Generally, these are outputs from the Cell Ranger pipeline.
Procedure
Loading the data into a Bioconductor class is a two step process. First, the file must be identified by either the user or the TENxFile
function. The appropriate function will be evoked to provide a TENxIO
class representation, e.g., TENxH5
for HDF5 files with an .h5
extension. Secondly, the import
method for that particular file class will render a common Bioconductor class representation for the user. The main representations used by the package are SingleCellExperiment
,SummarizedExperiment
, GRanges
, and RaggedExperiment
.
Dataset versioning
The versioning schema in the package mostly applies to HDF5 resources and is loosely based on versions of 10X datasets. For the most part, version 3 datasets usually contain ranged information at specific locations in the data file. Version 2 datasets will usually contain agenes.tsv
file, rather than features.tsv
as in version 3. If the file version is unknown, the software will attempt to derive the version from the data where possible.
File classes
TENxFile
The TENxFile
class is the catch-all class superclass that allows transition to subclasses pertinent to specific files. It inherits from the BiocFile
class and allows for easy dispatching import
methods.
showClass("TENxFile")
#> Class "TENxFile" [package "TENxIO"]
#>
#> Slots:
#>
#> Name: extension colidx rowidx remote compressed
#> Class: character integer integer logical logical
#>
#> Name: resource
#> Class: character_OR_connection
#>
#> Extends: "BiocFile"
#>
#> Known Subclasses: "TENxFragments", "TENxH5", "TENxMTX", "TENxPeaks", "TENxTSV"
ExperimentHub
resources
TENxFile
can handle resources from ExperimentHub
with careful inputs. For example, one can import a TENxBrainData
dataset via the appropriate ExperimentHub
identifier (EH1039
):
hub <- ExperimentHub::ExperimentHub() #> snapshotDate(): 2025-04-21 hub["EH1039"] #> ExperimentHub with 1 record #> # snapshotDate(): 2025-04-21 #> # names(): EH1039 #> # package(): TENxBrainData #> # $dataprovider: 10X Genomics #> # $species: Mus musculus #> # $rdataclass: character #> # $rdatadateadded: 2017-10-26 #> # $title: Brain scRNA-seq data, 'HDF5-based 10X Genomics' format #> # $description: Single-cell RNA-seq data for 1.3 million brain cells from E18 mice. 'HDF5-based 10X Genomics' format originally pro... #> # $taxonomyid: 10090 #> # $genome: mm10 #> # $sourcetype: HDF5 #> # $sourceurl: http://cf.10xgenomics.com/samples/cell-exp/1.3.0/1M_neurons/1M_neurons_filtered_gene_bc_matrices_h5.h5 #> # $sourcesize: NA #> # $tags: c("SequencingData", "RNASeqData", "ExpressionData", "SingleCell") #> # retrieve record with 'object[["EH1039"]]'
Currently, ExperimentHub
resources do not have an extension and it is best to provide that to the TENxFile
constructor function.
fname <- hub[["EH1039"]] TENxFile(fname, extension = "h5", group = "mm10", version = "2")
Note. EH1039
is a large ~ 4GB file and files without extension as those obtained from ExperimentHub
will emit a warning so that the user is aware that the import operation may fail, esp. if the internal structure of the file is modified.
TENxH5
TENxIO
mainly supports version 3 and 2 type of H5 files. These are files with specific groups and names as seen in h5.version.map
, an internal data.frame
map that guides the import operations.
TENxIO:::h5.version.map #> Version ID Symbol Type Ranges #> 1 3 /features/id /features/name /features/feature_type /features/interval #> 2 2 /genes /gene_names
In the case that, there is a file without genomic coordinate information, the constructor function can take an NA_character_
input for the ranges
argument.
The TENxH5
constructor function can be used on either version of these H5 files. In this example, we use a subset of the PBMC granulocyte H5 file obtained from the 10X website.
h5f <- system.file(
"extdata", "pbmc_granulocyte_ff_bc_ex.h5",
package = "TENxIO", mustWork = TRUE
)
library(rhdf5)
h5ls(h5f)
#> group name otype dclass dim
#> 0 / matrix H5I_GROUP
#> 1 /matrix barcodes H5I_DATASET STRING 10
#> 2 /matrix data H5I_DATASET INTEGER 2
#> 3 /matrix features H5I_GROUP
#> 4 /matrix/features _all_tag_keys H5I_DATASET STRING 2
#> 5 /matrix/features feature_type H5I_DATASET STRING 10
#> 6 /matrix/features genome H5I_DATASET STRING 10
#> 7 /matrix/features id H5I_DATASET STRING 10
#> 8 /matrix/features interval H5I_DATASET STRING 10
#> 9 /matrix/features name H5I_DATASET STRING 10
#> 10 /matrix indices H5I_DATASET INTEGER 2
#> 11 /matrix indptr H5I_DATASET INTEGER 11
#> 12 /matrix shape H5I_DATASET INTEGER 2
Note. The h5ls
function gives an overview of the structure of the file. It matches version 3 in our version map.
The show method gives an overview of the data components in the file:
con <- TENxH5(h5f) con #> TENxH5 object #> resource: /home/mramos/R/bioc-devel/TENxIO/extdata/pbmc_granulocyte_ff_bc_ex.h5 #> dim: 10 10 #> rownames: ENSG00000243485 ENSG00000237613 ... ENSG00000286448 ENSG00000236601 #> rowData names(3): ID Symbol Type #> Type: Gene Expression #> colnames: AAACAGCCAAATATCC-1 AAACAGCCAGGAACTG-1 ... AAACCGCGTGAGGTAG-1 AAACGCGCATACCCGG-1
import TENxH5 method
We can simply use the import method to convert the file representation to a Bioconductor class representation, typically aSingleCellExperiment
.
import(con) #> preview <= 12 rowRanges: pbmc_granulocyte_ff_bc_ex.h5 #> class: SingleCellExperiment #> dim: 10 10 #> metadata(1): TENxFile #> assays(1): counts #> rownames(10): ENSG00000243485 ENSG00000237613 ... ENSG00000286448 ENSG00000236601 #> rowData names(3): ID Symbol Type #> colnames(10): AAACAGCCAAATATCC-1 AAACAGCCAGGAACTG-1 ... AAACCGCGTGAGGTAG-1 AAACGCGCATACCCGG-1 #> colData names(0): #> reducedDimNames(0): #> mainExpName: Gene Expression #> altExpNames(0):
Note. Although the main representation in the package isSingleCellExperiment
, there could be a need for alternative data class representations of the data. The projection
field in the TENxH5
show method is an initial attempt to allow alternative representations.
TENxMTX
Matrix Market formats are also supported (.mtx
extension). These are typically imported as SummarizedExperiment as they usually contain count data.
mtxf <- system.file( "extdata", "pbmc_3k_ff_bc_ex.mtx", package = "TENxIO", mustWork = TRUE ) con <- TENxMTX(mtxf) con #> TENxMTX object #> resource: /home/mramos/R/bioc-devel/TENxIO/extdata/pbmc_3k_ff_bc_ex.mtx
import MTX method
The import
method yields a SummarizedExperiment
without colnames or rownames.
import(con) #> class: SummarizedExperiment #> dim: 171 10 #> metadata(1): TENxFile #> assays(1): counts #> rownames: NULL #> rowData names(0): #> colnames: NULL #> colData names(0):
TENxFileList
Generally, the 10X website will provide tarballs (with a .tar.gz
extension) which can be imported with the TENxFileList
class. The tarball can contain components of a gene expression experiment including the matrix data, row data (aka ‘features’) expressed as Ensembl identifiers, gene symbols, etc. and barcode information for the columns.
The TENxFileList
class allows importing multiple files within atar.gz
archive. The untar
function with the list = TRUE
argument shows all the file names in the tarball.
fl <- system.file(
"extdata", "pbmc_granulocyte_sorted_3k_ff_bc_ex_matrix.tar.gz",
package = "TENxIO", mustWork = TRUE
)
untar(fl, list = TRUE)
#> [1] "./pbmc_granulocyte_sorted_3k_filtered_feature_bc_matrix/filtered_feature_bc_matrix/"
#> [2] "./pbmc_granulocyte_sorted_3k_filtered_feature_bc_matrix/filtered_feature_bc_matrix/barcodes.tsv.gz"
#> [3] "./pbmc_granulocyte_sorted_3k_filtered_feature_bc_matrix/filtered_feature_bc_matrix/features.tsv.gz"
#> [4] "./pbmc_granulocyte_sorted_3k_filtered_feature_bc_matrix/filtered_feature_bc_matrix/matrix.mtx.gz"
We then use the import
method across all file types to obtain an integrated Bioconductor representation that is ready for analysis. Files in TENxFileList
can be represented as a SingleCellExperiment
with row names and column names.
con <- TENxFileList(fl) import(con) #> class: SingleCellExperiment #> dim: 10 10 #> metadata(1): TENxFileList #> assays(1): counts #> rownames(10): ENSG00000243485 ENSG00000237613 ... ENSG00000286448 ENSG00000236601 #> rowData names(3): ID Symbol Type #> colnames(10): AAACAGCCAAATATCC-1 AAACAGCCAGGAACTG-1 ... AAACCGCGTGAGGTAG-1 AAACGCGCATACCCGG-1 #> colData names(0): #> reducedDimNames(0): #> mainExpName: Gene Expression #> altExpNames(0):
TENxPeaks
Peak files can be handled with the TENxPeaks
class. These files are usually named *peak_annotation
files with a .tsv
extension. Peak files are represented as GRanges
.
pfl <- system.file( "extdata", "pbmc_granulocyte_sorted_3k_ex_atac_peak_annotation.tsv", package = "TENxIO", mustWork = TRUE ) tenxp <- TENxPeaks(pfl) peak_anno <- import(tenxp) peak_anno #> GRanges object with 10 ranges and 3 metadata columns: #> seqnames ranges strand | gene distance peak_type #> | #> [1] chr1 9768-10660 * | MIR1302-2HG -18894 distal #> [2] chr1 180582-181297 * | AL627309.5 -6721 distal #> [3] chr1 181404-181887 * | AL627309.5 -7543 distal #> [4] chr1 191175-192089 * | AL627309.5 -17314 distal #> [5] chr1 267561-268455 * | AP006222.2 707 distal #> [6] chr1 270864-271747 * | AP006222.2 4010 distal #> [7] chr1 273947-274758 * | AP006222.2 7093 distal #> [8] chr1 585751-586647 * | AC114498.1 -982 promoter #> [9] chr1 629484-630393 * | AC114498.1 41856 distal #> [10] chr1 633556-634476 * | AC114498.1 45928 distal #> ------- #> seqinfo: 1 sequence from an unspecified genome; no seqlengths
TENxFragments
Fragment files are quite large and we make use of the Rsamtools
package to import them with the yieldSize
parameter. By default, we use a yieldSize
of 200.
fr <- system.file( "extdata", "pbmc_3k_atac_ex_fragments.tsv.gz", package = "TENxIO", mustWork = TRUE )
Internally, we use the TabixFile
constructor function to work with indexed tsv.gz
files.
Note. A warning is emitted whenever a yieldSize
parameter is not set.
tfr <- TENxFragments(fr) #> Warning in TENxFragments(fr): Using default 'yieldSize' parameter tfr #> TENxFragments object #> resource: /home/mramos/R/bioc-devel/TENxIO/extdata/pbmc_3k_atac_ex_fragments.tsv.gz
Because there may be a variable number of fragments per barcode, we use a RaggedExperiment
representation for this file type.
fra <- import(tfr) fra #> class: RaggedExperiment #> dim: 10 10 #> assays(2): barcode readSupport #> rownames: NULL #> colnames(10): AAACCGCGTGAGGTAG-1 AAGCCTCCACACTAAT-1 ... TGATTAGTCTACCTGC-1 TTTAGCAAGGTAGCTT-1 #> colData names(0):
Similar operations to those used with SummarizedExperiment
are supported. For example, the genomic ranges can be displayed viarowRanges
:
rowRanges(fra) #> GRanges object with 10 ranges and 0 metadata columns: #> seqnames ranges strand #> #> [1] chr1 10152-10180 * #> [2] chr1 10152-10195 * #> [3] chr1 10080-10333 * #> [4] chr1 10091-10346 * #> [5] chr1 10152-10180 * #> [6] chr1 10152-10202 * #> [7] chr1 10097-10344 * #> [8] chr1 10080-10285 * #> [9] chr1 10090-10560 * #> [10] chr1 10074-10209 * #> ------- #> seqinfo: 1 sequence from an unspecified genome; no seqlengths
Click here to expand sessionInfo()
Session Information
sessionInfo()
#> R version 4.5.0 Patched (2025-04-15 r88148)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.2 LTS
#>
#> Matrix products: default
#> BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] rhdf5_2.53.0 TENxIO_1.11.1 SingleCellExperiment_1.31.0 SummarizedExperiment_1.39.0
#> [5] Biobase_2.69.0 GenomicRanges_1.61.0 GenomeInfoDb_1.45.3 IRanges_2.43.0
#> [9] S4Vectors_0.47.0 BiocGenerics_0.55.0 generics_0.1.3 MatrixGenerics_1.21.0
#> [13] matrixStats_1.5.0 colorout_1.3-2
#>
#> loaded via a namespace (and not attached):
#> [1] tidyselect_1.2.1 dplyr_1.1.4 blob_1.2.4 bitops_1.0-9 filelock_1.0.3
#> [6] R.utils_2.13.0 Biostrings_2.77.0 RaggedExperiment_1.33.1 fastmap_1.2.0 BiocFileCache_2.99.0
#> [11] digest_0.6.37 lifecycle_1.0.4 KEGGREST_1.49.0 RSQLite_2.3.9 magrittr_2.0.3
#> [16] compiler_4.5.0 rlang_1.1.6 tools_4.5.0 yaml_2.3.10 knitr_1.50
#> [21] S4Arrays_1.9.0 bit_4.6.0 curl_6.2.2 DelayedArray_0.35.1 BiocParallel_1.43.0
#> [26] abind_1.4-8 rsconnect_1.3.4 HDF5Array_1.37.0 withr_3.0.2 purrr_1.0.4
#> [31] R.oo_1.27.0 grid_4.5.0 ExperimentHub_2.99.0 Rhdf5lib_1.31.0 cli_3.6.5
#> [36] rmarkdown_2.29 crayon_1.5.3 rstudioapi_0.17.1 httr_1.4.7 tzdb_0.5.0
#> [41] BiocBaseUtils_1.11.0 DBI_1.2.3 cachem_1.1.0 parallel_4.5.0 AnnotationDbi_1.71.0
#> [46] BiocManager_1.30.25 XVector_0.49.0 vctrs_0.6.5 Matrix_1.7-3 jsonlite_2.0.0
#> [51] hms_1.1.3 bit64_4.6.0-1 archive_1.1.12 h5mread_1.1.0 glue_1.8.0
#> [56] codetools_0.2-20 BiocVersion_3.22.0 BiocIO_1.19.0 UCSC.utils_1.5.0 tibble_3.2.1
#> [61] pillar_1.10.2 rappdirs_0.3.3 htmltools_0.5.8.1 rhdf5filters_1.21.0 R6_2.6.1
#> [66] dbplyr_2.5.0 httr2_1.1.2 vroom_1.6.5 evaluate_1.0.3 lattice_0.22-7
#> [71] readr_2.1.5 AnnotationHub_3.99.0 Rsamtools_2.25.0 png_0.1-8 R.methodsS3_1.8.2
#> [76] memoise_2.0.1 BiocStyle_2.37.0 SparseArray_1.9.0 xfun_0.52 pkgconfig_2.0.3