Super-resolution (original) (raw)

LoRA

The Stable Diffusion upscaler diffusion model was created by the researchers and engineers from CompVis, Stability AI, and LAION. It is used to enhance the resolution of input images by a factor of 4.

Make sure to check out the Stable Diffusion Tips section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!

If you’re interested in using one of the official checkpoints for a task, explore the CompVis, Runway, and Stability AI Hub organizations!

StableDiffusionUpscalePipeline

class diffusers.StableDiffusionUpscalePipeline

< source >

( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet2DConditionModel low_res_scheduler: DDPMScheduler scheduler: KarrasDiffusionSchedulers safety_checker: typing.Optional[typing.Any] = None feature_extractor: typing.Optional[transformers.models.clip.image_processing_clip.CLIPImageProcessor] = None watermarker: typing.Optional[typing.Any] = None max_noise_level: int = 350 )

Parameters

Pipeline for text-guided image super-resolution using Stable Diffusion 2.

This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

The pipeline also inherits the following loading methods:

__call__

< source >

( prompt: typing.Union[str, typing.List[str]] = None image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None num_inference_steps: int = 75 guidance_scale: float = 9.0 noise_level: int = 20 negative_prompt: typing.Union[str, typing.List[str], NoneType] = None num_images_per_prompt: typing.Optional[int] = 1 eta: float = 0.0 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.Tensor] = None prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True callback: typing.Optional[typing.Callable[[int, int, torch.Tensor], NoneType]] = None callback_steps: int = 1 cross_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None clip_skip: int = None ) → StableDiffusionPipelineOutput or tuple

Parameters

If return_dict is True, StableDiffusionPipelineOutput is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content.

The call function to the pipeline for generation.

Examples:

import requests from PIL import Image from io import BytesIO from diffusers import StableDiffusionUpscalePipeline import torch

model_id = "stabilityai/stable-diffusion-x4-upscaler" pipeline = StableDiffusionUpscalePipeline.from_pretrained( ... model_id, variant="fp16", torch_dtype=torch.float16 ... ) pipeline = pipeline.to("cuda")

url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale/low_res_cat.png" response = requests.get(url) low_res_img = Image.open(BytesIO(response.content)).convert("RGB") low_res_img = low_res_img.resize((128, 128)) prompt = "a white cat"

upscaled_image = pipeline(prompt=prompt, image=low_res_img).images[0] upscaled_image.save("upsampled_cat.png")

enable_attention_slicing

< source >

( slice_size: typing.Union[int, str, NoneType] = 'auto' )

Parameters

Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor in slices to compute attention in several steps. For more than one attention head, the computation is performed sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.

⚠️ Don’t enable attention slicing if you’re already using scaled_dot_product_attention (SDPA) from PyTorch 2.0 or xFormers. These attention computations are already very memory efficient so you won’t need to enable this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious slow downs!

Examples:

import torch from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained( ... "stable-diffusion-v1-5/stable-diffusion-v1-5", ... torch_dtype=torch.float16, ... use_safetensors=True, ... )

prompt = "a photo of an astronaut riding a horse on mars" pipe.enable_attention_slicing() image = pipe(prompt).images[0]

Disable sliced attention computation. If enable_attention_slicing was previously called, attention is computed in one step.

enable_xformers_memory_efficient_attention

< source >

( attention_op: typing.Optional[typing.Callable] = None )

Parameters

Enable memory efficient attention from xFormers. When this option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed up during training is not guaranteed.

⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes precedent.

Examples:

import torch from diffusers import DiffusionPipeline from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16) pipe = pipe.to("cuda") pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)

pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)

disable_xformers_memory_efficient_attention

< source >

( )

Disable memory efficient attention from xFormers.

encode_prompt

< source >

( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None lora_scale: typing.Optional[float] = None clip_skip: typing.Optional[int] = None )

Parameters

Encodes the prompt into text encoder hidden states.

StableDiffusionPipelineOutput

class diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput

< source >

( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray] nsfw_content_detected: typing.Optional[typing.List[bool]] )

Parameters

Output class for Stable Diffusion pipelines.

< > Update on GitHub