Olena Balynska | Institute of Molecular Biology and Genetics (original) (raw)
Papers by Olena Balynska
Aims: Xenograft models, namely heterotransplantation of human cancer cells or tumor biopsies into... more Aims: Xenograft models, namely heterotransplantation of human cancer cells or tumor biopsies into immunodeficient rodents are the major preclinical approach for the development of novel cancer therapeutics. However, in these models the animals must be used only after the severe systemic immune suppression in order to ensure graft survival. Thus, additional new human brain tumor models without immune suppression of the recipient rodent may be required. Place and Duration of Study: Laboratory of Immunochemistry, V.P. Serbsky National Research Centre for Social and Forensic Psychiatry and Department of Nanobiotechnology, N.I. Pirogov Russian State Medical University and Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics between June 2009 and July 2010. Methodology: Brain tumor modeling was performed by intracerebral stereotactic implantation of cells to the healthy adult rats without any artificial immunodepression. Cells were implanted to the stri...
Nature Communications
Despite high initial efficacy, targeted therapies eventually fail in advanced cancers, as tumors ... more Despite high initial efficacy, targeted therapies eventually fail in advanced cancers, as tumors develop resistance and relapse. In contrast to the substantial body of research on the molecular mechanisms of resistance, understanding of how resistance evolves remains limited. Using an experimental model of ALK positive NSCLC, we explored the evolution of resistance to different clinical ALK inhibitors. We found that resistance can originate from heterogeneous, weakly resistant subpopulations with variable sensitivity to different ALK inhibitors. Instead of the commonly assumed stochastic single hit (epi) mutational transition, or drug-induced reprogramming, we found evidence for a hybrid scenario involving the gradual, multifactorial adaptation to the inhibitors through acquisition of multiple cooperating genetic and epigenetic adaptive changes. Additionally, we found that during this adaptation tumor cells might present unique, temporally restricted collateral sensitivities, absent in therapy naïve or fully resistant cells, suggesting the potential for new therapeutic interventions, directed against evolving resistance.
BMC Cell Biology, 2011
Background Nearly thirty years ago, it was first shown that malignant transformation with single ... more Background Nearly thirty years ago, it was first shown that malignant transformation with single oncogene necessarily requires the immortal state of the cell. From that time this thesis for the cells of human origin was not disproved. The basic point which we want to focus on by this short communication is the correct interpretation of the results obtained on the widely used human embryonic kidney 293 (HEK293) cells. Results Intensive literature analysis revealed an increasing number of recent studies discovering new oncogenes with non-overlapping functions. Since the 1970s, dozens of oncogenes have been identified in human cancer. Cultured cell lines are often used as model systems in these experiments. In some investigations the results obtained on such cells are interpreted by the authors as a malignant transformation of normal animal or even normal human cells (as for example with HEK293 cells). However, when a cell line gains the ability to undergo continuous cell division, the cells are not normal any more, they are immortalized cells. Nevertheless, the authors consider these cells as normal human ones, what is basically incorrect. Moreover, it was early demonstrated that the widely used human embryonic kidney 293 (HEK293) cells have a relationship to neurons. Conclusions Thus, the experiments with established cell lines reinforce the notion that immortality is an essential requirement for malignant transformation that cooperates with other oncogenic changes to program the neoplastic state and substances under such investigation should be interpreted as factors which do not malignantly transform normal cells alone, but possess the ability to enhance the tumorigenic potential of already immortalized cells.
Cytology and Genetics, 2011
Increased expression of the insulin like growth factor (IGF) family members, IGF1, IGF2, their re... more Increased expression of the insulin like growth factor (IGF) family members, IGF1, IGF2, their receptors and binding proteins, or combinations thereof has been documented in various malignancies including gliomas. The results of multiple investigations suggest that the IGFs can play a paracrine and/or autocrine role in promoting tumor growth in situ during tumor progression but that these roles may vary depending on the tissue of origin. Enhanced IGF1 expression was not found in glioblastomas and it was sup posed that IGF1 participation in the development of glial tumors may be substituted by protein products of highly expressed other genes, also participating in PI3K and MAPK pathways. Increased expression of IGF binding protein genes in brain tumors makes the picture even more complicated. As other binding proteins, IGFBPs regulate the activity of their ligands by prolonging their half life. The discrepancies arising from con flicting evidence on the results obtained by different laboratories in human gliomas are discussed. Our data highlight the importance of viewing the IGF related proteins as a complex multifactorial system and show that changes in the expression levels of any one component of the system, in a given malignancy, should be interpreted with caution. As IGF targeting for anticancer therapy is rapidly becoming clinical reality, an understanding of this complexity is very timely.
International Journal of Biological Sciences, 2012
The activation of extracellular signal-regulated kinases (ERK1/2) has been associated with specif... more The activation of extracellular signal-regulated kinases (ERK1/2) has been associated with specific outcomes. Sustained activation of ERK1/2 by nerve growth factor (NGF) is associated with translocation of ERKs to the nucleus of PC12 cells and precedes their differentiation into sympathetic-like neurons whereas transient activation by epidermal growth factor (EGF) leads to cell proliferation. It was demonstrated that different growth factors initiating the same cellular signaling pathways may lead to the different cell destiny, either to proliferation or to the inhibition of mitogenesis and apoptosis. Thus, further investigation on kinetic differences in activation of certain signal cascades in different cell types by biologically different agents are necessary for understanding the mechanisms as to how cells make a choice between proliferation and differentiation. It was reported that chitinase 3-like 1 (CHI3L1) protein promotes the growth of human synovial cells as well as skin and fetal lung fibroblasts similarly to insulin-like growth factor 1 (IGF1). Both are involved in mediating the mitogenic response through the signal-regulated kinases ERK1/2. In addition, CHI3L1 which is highly expressed in different tumors including glioblastomas possesses oncogenic properties. As we found earlier, chitinase 3-like 2 (CHI3L2) most closely related to human CHI3L1 also showed increased expression in glial tumors at both the RNA and protein levels and stimulated the activation of the MAPK pathway through phosphorylation of ERK1/2 in 293 and U87 MG cells. The work described here demonstrates the influence of CHI3L2 and CHI3L1 on the duration of MAPK cellular signaling and phosphorylated ERK1/2 translocation to the nucleus. In contrast to the activation of ERK1/2 phosphorylation by CHI3L1 that leads to a proliferative signal (similar to the EGF effect in PC12 cells), activation of ERK1/2 phosphorylation by CHI3L2 (similar to NGF) inhibits cell mitogenesis and proliferation.
International journal of biomedical science : IJBS, 2011
An important task in understanding oncogenesis is the identification of those genes whose copy nu... more An important task in understanding oncogenesis is the identification of those genes whose copy number and expression increase during tumorigenesis. Previously, in an effort to identify genes which could be used as molecular markers for glial tumors, we compared gene expression in glioblastoma to the normal brain cells. Among the genes with the most pronounced increased expression in tumors there was CHI3L1, encoding the secreted chitinase 3-like 1 protein (also known as HC gp-39 or YKL-40). Expression of CHI3L1 was found increased significantly in various tumors in comparison with corresponding normal tissues. Here we show that CHI3L1 can decrease the doubling time of 293 cells. We have also demonstrated that CHI3L1 allows the anchorage-independent growth in soft agar and, in addition, stable CHI3L1 expression made 293 cells tumorigenic: these cells stimulate the initiation of tumors after their xenograft transplantation into the Wistar rat brains. Thus, the overexpression of CHI3L1 is likely to be critical in the development of some tumors and when we gain more information about mechanisms of CHI3L1 oncogenicity, it could be used as one of the potential targets for anticancer therapy. (Int J Biomed Sci 2011; 7 (3): 230-237)
BMC Cell Biology, 2011
Background: Nearly thirty years ago, it was first shown that malignant transformation with single... more Background: Nearly thirty years ago, it was first shown that malignant transformation with single oncogene necessarily requires the immortal state of the cell. From that time this thesis for the cells of human origin was not disproved. The basic point which we want to focus on by this short communication is the correct interpretation of the results obtained on the widely used human embryonic kidney 293 (HEK293) cells. Results: Intensive literature analysis revealed an increasing number of recent studies discovering new oncogenes with non-overlapping functions. Since the 1970s, dozens of oncogenes have been identified in human cancer. Cultured cell lines are often used as model systems in these experiments. In some investigations the results obtained on such cells are interpreted by the authors as a malignant transformation of normal animal or even normal human cells (as for example with HEK293 cells). However, when a cell line gains the ability to undergo continuous cell division, the cells are not normal any more, they are immortalized cells. Nevertheless, the authors consider these cells as normal human ones, what is basically incorrect. Moreover, it was early demonstrated that the widely used human embryonic kidney 293 (HEK293) cells have a relationship to neurons. Conclusions: Thus, the experiments with established cell lines reinforce the notion that immortality is an essential requirement for malignant transformation that cooperates with other oncogenic changes to program the neoplastic state and substances under such investigation should be interpreted as factors which do not malignantly transform normal cells alone, but possess the ability to enhance the tumorigenic potential of already immortalized cells.
Biopolymers and Cell, 2011
Aim. To characterize the immortalized 293 cell line after stable transfection with human oncogene... more Aim. To characterize the immortalized 293 cell line after stable transfection with human oncogene (CHI3L1). Methods. 293 cells, stably transfected with pcDNA3.1_CHI3L1, and 293 cells, stably transfected with pcDNA3.1 as a negative control, were used throughout all experiments. The clones of CHI3L1-expressing 293 cells and 293 cells, transfected with pcDNA3.1, were analyzed by immunofluorescence and confocal microscopy. Cell proliferation was measured using MTT assay; analyses of ERK1/2 and AKT activation and their cellular localization were performed with anti-phospho-ERK and anti-phospho-AKT antibodies. Specific activation of MAP and PI3 kinases was measured by densitometric analysis of Western-blot signals. Results. The obtained results show quite modest ability of CHI3L1 to stimulate cell growth and reflect rather an improved cellular plating efficiency of the 293 cells stably transfected with pcDNA3.1_CHI3L1 as compared to the 293 cells transfected with an «empty» vector. ERK1/2 and AKT are activated in the 293_CHI3L1 cells. In these cells phosphorylated ERK1/2 were localized in both cell cytoplasm and nuclei while AKT only in cytoplasm. The 293_CHI3L1 cells differed from the 293 cells, transfected with an «empty» vector, in their size and ability to adhere to the culture plates.
Biopolymers and Cell, 2013
Reverse transcriptase from avian myeloblastosis virus (AMV) was the subject of the study, from wh... more Reverse transcriptase from avian myeloblastosis virus (AMV) was the subject of the study, from which the investigations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past century and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF) family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-based hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Kohonen's maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line 293_CHI3L1, stably producing chitinase-like protein CHI3L1 was developed and these cells were found to have an accelerated growth rate and could undergo anchorage-independent growth in soft agar which is one of the most consistent indicators of oncogenic transformation. The formation of tumors in rats by 293_CHI3L1 cells evidences that CHI3L1 is an oncogene involved in tumorigenesis. In vitro experiments showed that constitutive expression of CHI3L1 gene promotes chromosome instability in 293 cells.
Aims: Xenograft models, namely heterotransplantation of human cancer cells or tumor biopsies into... more Aims: Xenograft models, namely heterotransplantation of human cancer cells or tumor biopsies into immunodeficient rodents are the major preclinical approach for the development of novel cancer therapeutics. However, in these models the animals must be used only after the severe systemic immune suppression in order to ensure graft survival. Thus, additional new human brain tumor models without immune suppression of the recipient rodent may be required. Place and Duration Methodology: Brain tumor modeling was performed by intracerebral stereotactic implantation of cells to the healthy adult rats without any artificial immunodepression. Cells were implanted to the striatum region of ketamine-anesthetized rats at specific coordinates according to Swanson's rat brain atlas. Tumor growth was monitored
Aims: Xenograft models, namely heterotransplantation of human cancer cells or tumor biopsies into... more Aims: Xenograft models, namely heterotransplantation of human cancer cells or tumor biopsies into immunodeficient rodents are the major preclinical approach for the development of novel cancer therapeutics. However, in these models the animals must be used only after the severe systemic immune suppression in order to ensure graft survival. Thus, additional new human brain tumor models without immune suppression of the recipient rodent may be required. Place and Duration of Study: Laboratory of Immunochemistry, V.P. Serbsky National Research Centre for Social and Forensic Psychiatry and Department of Nanobiotechnology, N.I. Pirogov Russian State Medical University and Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics between June 2009 and July 2010. Methodology: Brain tumor modeling was performed by intracerebral stereotactic implantation of cells to the healthy adult rats without any artificial immunodepression. Cells were implanted to the stri...
Nature Communications
Despite high initial efficacy, targeted therapies eventually fail in advanced cancers, as tumors ... more Despite high initial efficacy, targeted therapies eventually fail in advanced cancers, as tumors develop resistance and relapse. In contrast to the substantial body of research on the molecular mechanisms of resistance, understanding of how resistance evolves remains limited. Using an experimental model of ALK positive NSCLC, we explored the evolution of resistance to different clinical ALK inhibitors. We found that resistance can originate from heterogeneous, weakly resistant subpopulations with variable sensitivity to different ALK inhibitors. Instead of the commonly assumed stochastic single hit (epi) mutational transition, or drug-induced reprogramming, we found evidence for a hybrid scenario involving the gradual, multifactorial adaptation to the inhibitors through acquisition of multiple cooperating genetic and epigenetic adaptive changes. Additionally, we found that during this adaptation tumor cells might present unique, temporally restricted collateral sensitivities, absent in therapy naïve or fully resistant cells, suggesting the potential for new therapeutic interventions, directed against evolving resistance.
BMC Cell Biology, 2011
Background Nearly thirty years ago, it was first shown that malignant transformation with single ... more Background Nearly thirty years ago, it was first shown that malignant transformation with single oncogene necessarily requires the immortal state of the cell. From that time this thesis for the cells of human origin was not disproved. The basic point which we want to focus on by this short communication is the correct interpretation of the results obtained on the widely used human embryonic kidney 293 (HEK293) cells. Results Intensive literature analysis revealed an increasing number of recent studies discovering new oncogenes with non-overlapping functions. Since the 1970s, dozens of oncogenes have been identified in human cancer. Cultured cell lines are often used as model systems in these experiments. In some investigations the results obtained on such cells are interpreted by the authors as a malignant transformation of normal animal or even normal human cells (as for example with HEK293 cells). However, when a cell line gains the ability to undergo continuous cell division, the cells are not normal any more, they are immortalized cells. Nevertheless, the authors consider these cells as normal human ones, what is basically incorrect. Moreover, it was early demonstrated that the widely used human embryonic kidney 293 (HEK293) cells have a relationship to neurons. Conclusions Thus, the experiments with established cell lines reinforce the notion that immortality is an essential requirement for malignant transformation that cooperates with other oncogenic changes to program the neoplastic state and substances under such investigation should be interpreted as factors which do not malignantly transform normal cells alone, but possess the ability to enhance the tumorigenic potential of already immortalized cells.
Cytology and Genetics, 2011
Increased expression of the insulin like growth factor (IGF) family members, IGF1, IGF2, their re... more Increased expression of the insulin like growth factor (IGF) family members, IGF1, IGF2, their receptors and binding proteins, or combinations thereof has been documented in various malignancies including gliomas. The results of multiple investigations suggest that the IGFs can play a paracrine and/or autocrine role in promoting tumor growth in situ during tumor progression but that these roles may vary depending on the tissue of origin. Enhanced IGF1 expression was not found in glioblastomas and it was sup posed that IGF1 participation in the development of glial tumors may be substituted by protein products of highly expressed other genes, also participating in PI3K and MAPK pathways. Increased expression of IGF binding protein genes in brain tumors makes the picture even more complicated. As other binding proteins, IGFBPs regulate the activity of their ligands by prolonging their half life. The discrepancies arising from con flicting evidence on the results obtained by different laboratories in human gliomas are discussed. Our data highlight the importance of viewing the IGF related proteins as a complex multifactorial system and show that changes in the expression levels of any one component of the system, in a given malignancy, should be interpreted with caution. As IGF targeting for anticancer therapy is rapidly becoming clinical reality, an understanding of this complexity is very timely.
International Journal of Biological Sciences, 2012
The activation of extracellular signal-regulated kinases (ERK1/2) has been associated with specif... more The activation of extracellular signal-regulated kinases (ERK1/2) has been associated with specific outcomes. Sustained activation of ERK1/2 by nerve growth factor (NGF) is associated with translocation of ERKs to the nucleus of PC12 cells and precedes their differentiation into sympathetic-like neurons whereas transient activation by epidermal growth factor (EGF) leads to cell proliferation. It was demonstrated that different growth factors initiating the same cellular signaling pathways may lead to the different cell destiny, either to proliferation or to the inhibition of mitogenesis and apoptosis. Thus, further investigation on kinetic differences in activation of certain signal cascades in different cell types by biologically different agents are necessary for understanding the mechanisms as to how cells make a choice between proliferation and differentiation. It was reported that chitinase 3-like 1 (CHI3L1) protein promotes the growth of human synovial cells as well as skin and fetal lung fibroblasts similarly to insulin-like growth factor 1 (IGF1). Both are involved in mediating the mitogenic response through the signal-regulated kinases ERK1/2. In addition, CHI3L1 which is highly expressed in different tumors including glioblastomas possesses oncogenic properties. As we found earlier, chitinase 3-like 2 (CHI3L2) most closely related to human CHI3L1 also showed increased expression in glial tumors at both the RNA and protein levels and stimulated the activation of the MAPK pathway through phosphorylation of ERK1/2 in 293 and U87 MG cells. The work described here demonstrates the influence of CHI3L2 and CHI3L1 on the duration of MAPK cellular signaling and phosphorylated ERK1/2 translocation to the nucleus. In contrast to the activation of ERK1/2 phosphorylation by CHI3L1 that leads to a proliferative signal (similar to the EGF effect in PC12 cells), activation of ERK1/2 phosphorylation by CHI3L2 (similar to NGF) inhibits cell mitogenesis and proliferation.
International journal of biomedical science : IJBS, 2011
An important task in understanding oncogenesis is the identification of those genes whose copy nu... more An important task in understanding oncogenesis is the identification of those genes whose copy number and expression increase during tumorigenesis. Previously, in an effort to identify genes which could be used as molecular markers for glial tumors, we compared gene expression in glioblastoma to the normal brain cells. Among the genes with the most pronounced increased expression in tumors there was CHI3L1, encoding the secreted chitinase 3-like 1 protein (also known as HC gp-39 or YKL-40). Expression of CHI3L1 was found increased significantly in various tumors in comparison with corresponding normal tissues. Here we show that CHI3L1 can decrease the doubling time of 293 cells. We have also demonstrated that CHI3L1 allows the anchorage-independent growth in soft agar and, in addition, stable CHI3L1 expression made 293 cells tumorigenic: these cells stimulate the initiation of tumors after their xenograft transplantation into the Wistar rat brains. Thus, the overexpression of CHI3L1 is likely to be critical in the development of some tumors and when we gain more information about mechanisms of CHI3L1 oncogenicity, it could be used as one of the potential targets for anticancer therapy. (Int J Biomed Sci 2011; 7 (3): 230-237)
BMC Cell Biology, 2011
Background: Nearly thirty years ago, it was first shown that malignant transformation with single... more Background: Nearly thirty years ago, it was first shown that malignant transformation with single oncogene necessarily requires the immortal state of the cell. From that time this thesis for the cells of human origin was not disproved. The basic point which we want to focus on by this short communication is the correct interpretation of the results obtained on the widely used human embryonic kidney 293 (HEK293) cells. Results: Intensive literature analysis revealed an increasing number of recent studies discovering new oncogenes with non-overlapping functions. Since the 1970s, dozens of oncogenes have been identified in human cancer. Cultured cell lines are often used as model systems in these experiments. In some investigations the results obtained on such cells are interpreted by the authors as a malignant transformation of normal animal or even normal human cells (as for example with HEK293 cells). However, when a cell line gains the ability to undergo continuous cell division, the cells are not normal any more, they are immortalized cells. Nevertheless, the authors consider these cells as normal human ones, what is basically incorrect. Moreover, it was early demonstrated that the widely used human embryonic kidney 293 (HEK293) cells have a relationship to neurons. Conclusions: Thus, the experiments with established cell lines reinforce the notion that immortality is an essential requirement for malignant transformation that cooperates with other oncogenic changes to program the neoplastic state and substances under such investigation should be interpreted as factors which do not malignantly transform normal cells alone, but possess the ability to enhance the tumorigenic potential of already immortalized cells.
Biopolymers and Cell, 2011
Aim. To characterize the immortalized 293 cell line after stable transfection with human oncogene... more Aim. To characterize the immortalized 293 cell line after stable transfection with human oncogene (CHI3L1). Methods. 293 cells, stably transfected with pcDNA3.1_CHI3L1, and 293 cells, stably transfected with pcDNA3.1 as a negative control, were used throughout all experiments. The clones of CHI3L1-expressing 293 cells and 293 cells, transfected with pcDNA3.1, were analyzed by immunofluorescence and confocal microscopy. Cell proliferation was measured using MTT assay; analyses of ERK1/2 and AKT activation and their cellular localization were performed with anti-phospho-ERK and anti-phospho-AKT antibodies. Specific activation of MAP and PI3 kinases was measured by densitometric analysis of Western-blot signals. Results. The obtained results show quite modest ability of CHI3L1 to stimulate cell growth and reflect rather an improved cellular plating efficiency of the 293 cells stably transfected with pcDNA3.1_CHI3L1 as compared to the 293 cells transfected with an «empty» vector. ERK1/2 and AKT are activated in the 293_CHI3L1 cells. In these cells phosphorylated ERK1/2 were localized in both cell cytoplasm and nuclei while AKT only in cytoplasm. The 293_CHI3L1 cells differed from the 293 cells, transfected with an «empty» vector, in their size and ability to adhere to the culture plates.
Biopolymers and Cell, 2013
Reverse transcriptase from avian myeloblastosis virus (AMV) was the subject of the study, from wh... more Reverse transcriptase from avian myeloblastosis virus (AMV) was the subject of the study, from which the investigations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past century and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF) family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-based hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Kohonen's maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line 293_CHI3L1, stably producing chitinase-like protein CHI3L1 was developed and these cells were found to have an accelerated growth rate and could undergo anchorage-independent growth in soft agar which is one of the most consistent indicators of oncogenic transformation. The formation of tumors in rats by 293_CHI3L1 cells evidences that CHI3L1 is an oncogene involved in tumorigenesis. In vitro experiments showed that constitutive expression of CHI3L1 gene promotes chromosome instability in 293 cells.
Aims: Xenograft models, namely heterotransplantation of human cancer cells or tumor biopsies into... more Aims: Xenograft models, namely heterotransplantation of human cancer cells or tumor biopsies into immunodeficient rodents are the major preclinical approach for the development of novel cancer therapeutics. However, in these models the animals must be used only after the severe systemic immune suppression in order to ensure graft survival. Thus, additional new human brain tumor models without immune suppression of the recipient rodent may be required. Place and Duration Methodology: Brain tumor modeling was performed by intracerebral stereotactic implantation of cells to the healthy adult rats without any artificial immunodepression. Cells were implanted to the striatum region of ketamine-anesthetized rats at specific coordinates according to Swanson's rat brain atlas. Tumor growth was monitored