A. Buffo - Academia.edu (original) (raw)
Papers by A. Buffo
Biochemical Pharmacology, 2010
PLoS ONE, 2008
Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the... more Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the myelinating cells of the central nervous system, is of paramount importance to address new strategies to replace endogenous damaged cells in the adult brain and foster repair in neurodegenerative diseases. Upon brain injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes (cysLTs), two families of endogenous signaling molecules, are markedly increased at the site of damage, suggesting that they may act as ''danger signals'' to alert responses to tissue damage and start repair. Here we show that, in brain telencephalon, GPR17, a recently deorphanized receptor for both uracil nucleotides and cysLTs (e.g., UDPglucose and LTD 4 ), is normally present on neurons and on a subset of parenchymal quiescent oligodendrocyte precursor cells. We also show that induction of brain injury using an established focal ischemia model in the rodent induces profound spatiotemporal-dependent changes of GPR17. In the lesioned area, we observed an early and transient up-regulation of GPR17 in neurons expressing the cellular stress marker heat shock protein 70. Magnetic Resonance Imaging in living mice showed that the in vivo pharmacological or biotechnological knock down of GPR17 markedly prevents brain infarct evolution, suggesting GPR17 as a mediator of neuronal death at this early ischemic stage. At later times after ischemia, GPR17 immunolabeling appeared on microglia/macrophages infiltrating the lesioned area to indicate that GPR17 may also acts as a player in the remodeling of brain circuitries by microglia. At this later stage, parenchymal GPR17 + oligodendrocyte progenitors started proliferating in the peri-injured area, suggesting initiation of remyelination. To confirm a specific role for GPR17 in oligodendrocyte differentiation, the in vitro exposure of cortical pre-oligodendrocytes to the GPR17 endogenous ligands UDPglucose and LTD 4 promoted the expression of myelin basic protein, confirming progression toward mature oligodendrocytes. Thus, GPR17 may act as a ''sensor'' that is activated upon brain injury on several embryonically distinct cell types, and may play a key role in both inducing neuronal death inside the ischemic core and in orchestrating the local remodeling/repair response. Specifically, we suggest GPR17 as a novel target for therapeutic manipulation to foster repair of demyelinating wounds, the types of lesions that also occur in patients with multiple sclerosis.
Journal of Neuroscience, 2012
In the adult mammalian subventricular zone (SVZ), GFAP-positive neural stem cells (NSCs) generate... more In the adult mammalian subventricular zone (SVZ), GFAP-positive neural stem cells (NSCs) generate neuroblasts that migrate tangentially along the rostral migratory stream (RMS) toward the olfactory bulb (OB). In the mouse brain, we found that the plasticity inhibitors Nogo-A and Nogo receptor 1 (NgR1) are differentially expressed in the SVZ-OB system, in which Nogo-A identifies immature neuroblasts and NgR1 germinal astrocytes. We therefore examined the role of Nogo-A and NgR1 in the regulation of neurogenesis. Pharmacological experiments show that Nogo-66/NgR1 interaction reduces the proliferation of NSCs. This is consistent with a negative-feedback loop, in which newly generated neurons modulate cell division of SVZ stem cells. Moreover, the Nogo-A-Δ20 domain promotes neuroblast migration toward the OB through activation of the Rho/ROCK (Rho-associated, coiled-coil containing protein kinase) pathway, without the participation of NgR1. Our findings reveal a new unprecedented function for Nogo-A and NgR1 in the homeostatic regulation of the pace of neurogenesis in the adult mouse SVZ and in the migration of neuroblasts along the RMS.
Progress in Neurobiology, 2004
In the adult brain, different neuronal populations display different degrees of plasticity. Here,... more In the adult brain, different neuronal populations display different degrees of plasticity. Here, we describe the highly different plastic properties of inferior olivary neurones and Purkinje cells. Olivary neurones show a basal expression of growth-associated proteins, such as GAP-43 and Krox24/EGR-1, and remarkable remodelling capabilities of their terminal arbour. They also regenerate their transected neurites into growth-permissive territories and may reinnervate the lost target. Sprouting and regrowing olivary axons are able to follow specific positional information cues to establish new connections according to the original projection map. In addition, they set a strong cell body reaction to injury, which in specific olivary subsets is regulated by inhibitory target-derived cues. In contrast, Purkinje cells do not have a constitutive level of growth-associated genes, and show little cell body reaction, no axonal regeneration after axotomy, and weak sprouting capabilities. Block of myelin-derived signals allows terminal arbour remodelling, but not regeneration, while selective over-expression of GAP-43 induces axonal sprouting along the axonal surface and at the level of the lesion. We suggest that the high constitutive intrinsic plasticity of the inferior olive neurones allows their terminal arbour to sustain the activity-dependent ongoing competition with the parallel fibres in order to maintain the post-synaptic territory, and possibly underlies mechanisms of learning and memory. Such a plasticity is used also as a reparative mechanism following axotomy. In contrast, in Purkinje cells, poor intrinsic regenerative capabilities and myelin-derived signals stabilise the mature connectivity and prevent axonal regeneration after lesion.
Journal of Biological Chemistry, 2013
Background: GPR17 is a key player in oligodendrocyte differentiation. By regulating the availabil... more Background: GPR17 is a key player in oligodendrocyte differentiation. By regulating the availability of receptors at the cell surface, agonist-induced GPR17 trafficking may influence terminal cell fate. Results: UDP-glucose and LTD 4 induce GPR17 endocytosis and distribution in lysosomes or recycling compartments. Conclusion: Agonist-activated GPR17 undergoes partial degradation and fast membrane recycling. Significance: Understanding GPR17 trafficking may increase our knowledge of oligodendrocyte differentiation and myelination.
Glia, 2006
Astrocytes are thought to play a variety of key roles in the adult brain, such as their participa... more Astrocytes are thought to play a variety of key roles in the adult brain, such as their participation in synaptic transmission, in wound healing upon brain injury, and adult neurogenesis. However, to elucidate these functions in vivo has been difficult because of the lack of astrocyte-specific gene targeting. Here we show that the inducible form of Cre (CreERT2) expressed in the locus of the astrocyte-specific glutamate transporter (GLAST) allows precisely timed gene deletion in adult astrocytes as well as radial glial cells at earlier developmental stages. Moreover, postnatal and adult neurogenesis can be targeted at different stages with high efficiency as it originates from astroglial cells. Taken together, this mouse line will allow dissecting the molecular pathways regulating the diverse functions of astrocytes as precursors, support cells, repair cells, and cells involved in neuronal information processing.
European Journal of Neuroscience, 2003
Successful axon regeneration relies on the capability of the lesioned neurons to up-regulate a sp... more Successful axon regeneration relies on the capability of the lesioned neurons to up-regulate a speci®c set of injury/growth-associated genes. In the adult central nervous system, the strength of the cell body response is generally related to the distance of the injury site from the perikaryon, being stronger for proximal lesions. Nevertheless, inferior olive (IO) cells react to injury and regenerate their axons even after distal transections. To investigate the mechanisms that regulate the IO growth properties, we examined the expression of injury/growth markers (nitric oxide synthase, growth-associated protein 43 and c-Jun) after target deletion or axotomy performed at different sites along the olivocerebellar pathway. Both axon injury and target loss disclose two subsets of IO neurons distributed within precise subnuclei: one subset up-regulates all markers in all conditions, whereas the other shows a mild c-Jun expression but remains unresponsive even after a very proximal axotomy. These observations indicate that distinct subpopulations of IO cells respond to different regulatory strategies. Unresponsive neurons appear insensitive to environmental positive or negative cues, suggesting that they are intrinsically unable to set up a cellular reaction to injury. In contrast, cell body changes in reactive neurons are elicited after the removal of retrogradely transported target-derived inhibitory signals. Target loss also induces degeneration of IO cells, whose survival remains partially dependent on Purkinje targets in adulthood. Thus, the intrinsic regenerative potential of a functionally homogeneous population is regulated by multiple mechanisms, speci®c for distinct neuronal subsets.
Annals of the New York Academy of Sciences, 2007
spine formation. Coincidentally, the olivary terminals belonging to the few survived olivary neur... more spine formation. Coincidentally, the olivary terminals belonging to the few survived olivary neurons undergo an extensive collateral sprouting resulting in reinnervation of the neighboring denervated PCs. We obtained chemical deafferentation of PCs in adult rats (body weight, 120-170 g; age, 35-40 days) by a single intraperitoneal injection of 3AP (65 mg/kg body weight), and as early as 3 days after 3AP treatment, important morphological changes could be observed on PCs.MAPK (mitogenactivated protein kinase) cascades and more specifically extracellular signal-regulated kinases 1/2 (ERK1/2) play a critical role in the signaling events underlying synaptic plasticity. For instance, long-term depression (LTD) in the adult hippocampus and long-term potentiation (LTP) in cerebellum both involve ERK activation. Since PCs deprived of their climbing fibers (CF) afferents initiate an intensive remodeling Q1 of the spines and rapid recall of the remaining CFs, it prompted us to see whether the observed phenomena correlated with MAPK and Akt activation.Immunohistochemistry and Western blotting were done at various time points after 3AP application (from 24 h to 6 days), as the exact dynamics of CF loss is not precisely known. As judged by Western blotting, there was no increase of activated ERK in the cerebellum. However, immunohistochemistry revealed increased ERK phosphorylation in the "pinceaux" of basket cells in 3AP animals. Similarly, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), p38 MAPK, and Akt activation were also studied by means of Western :1156 2 ANNALS NEW YORK ACADEMY OF SCIENCES blotting and immunohistochemistry. Upon 3AP treatment no changes in phosphorylation status could be seen in the different kinases subjected to analysis. Our results suggest that activation of MAPK and Akt cascades is not essential in this model of neuronal plasticity.
Annals of the New York Academy of Sciences, 2005
The mitogen-activated protein kinases (MAPKs) are a family of signal transduction mediators that ... more The mitogen-activated protein kinases (MAPKs) are a family of signal transduction mediators that regulate a number of cellular activities, including cell growth and proliferation, differentiation and survival, via phosphorylation (activation) of protein kinases. MAPKs are also recruited during synaptic plasticity and remodeling. In the present study we used Western blotting and immunohistochemistry to examine the effects of harmaline administration on the phosphorylation state of three MAPKs: the extracellular signalregulated kinase (ERK1/2), c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK), and p38 MAPK. Harmaline is a tremorigenic drug known to induce enhanced and rhythmic firing of the inferior olive. In rats, synchronous activity of the inferior olive cells induced by harmaline administered for four days from postnatal day 9 to 12 resulted in prolonged maintenance of polyinnervation of Purkinje cells by climbing fibers (axons of olivary cells). Immunohistochemistry showed small but sustained cytoplasmic positivity to phospho-ERK in Purkinje cells and a strong signal for phospho-ERK in the "pinceaux," terminals of the interneuronal basket cells onto Purkinje cells. A similar pattern was observed for JNK/SAPK, while no changes in p38 were noticed. Thus, it was revealed that the activation of two members of the MAPK family in these inhibitory presynaptic terminals is also one consequence of synchronous olivary input to Purkinje cells known to affect developmental plasticity.
Alzheimer's & Dementia, 2009
Following axotomy, cerebellar Purkinje cells (PCs) do not elongate their axons, even in a favoura... more Following axotomy, cerebellar Purkinje cells (PCs) do not elongate their axons, even in a favourable environment, and are resistant to death. They have no constitutive presence of common growth-associated proteins, such as GAP-43 and c-Jun Previous experiments show that injured transgenic PCs overexpressing GAP-43 exhibit a profuse sprouting along the axon and at its severed end. Nevertheless, the lesioned axons are unable to regenerate either spontaneously or into growth-permissive environments. In addition, a considerable number of GAP-43 transgenic PCs degenerate after injury. c-Jun is an inducible transcription factor expressed in axotomized central neurons and regenerating peripheral neurons. It also contributes to programmed cell death during development. To test whether c-Jun could modify the response of PCs to axotomy or enhance the growth/death phenomena of GAP-43 Purkinje neurons, we generated transgenic mice overexpressing c-Jun in PCs. However, c-Jun upregulation did not affect the adult intact phenotype of these neurons and their regenerative and survival capabilities after axotomy. Also in the cross-bred GAP-43/c-Jun mice, c-Jun did not modify the response of GAP-43 PCs to axotomy. By contrast, in organotypic cultures of cerebellum taken from 9-day-old-pups, the survival capabilities of PCs overexpressing c-Jun decreased, in association with a consistent c-Jun phosphorylation. On the whole our data show that c-Jun alone is unable to trigger regenerative or degenerative phenomena in PCs and suggest that the cellular action of this early gene in developing and mature neurons strongly depends on interplaying intracellular signals.
Biochemical Pharmacology, 2010
PLoS ONE, 2008
Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the... more Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the myelinating cells of the central nervous system, is of paramount importance to address new strategies to replace endogenous damaged cells in the adult brain and foster repair in neurodegenerative diseases. Upon brain injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes (cysLTs), two families of endogenous signaling molecules, are markedly increased at the site of damage, suggesting that they may act as ''danger signals'' to alert responses to tissue damage and start repair. Here we show that, in brain telencephalon, GPR17, a recently deorphanized receptor for both uracil nucleotides and cysLTs (e.g., UDPglucose and LTD 4 ), is normally present on neurons and on a subset of parenchymal quiescent oligodendrocyte precursor cells. We also show that induction of brain injury using an established focal ischemia model in the rodent induces profound spatiotemporal-dependent changes of GPR17. In the lesioned area, we observed an early and transient up-regulation of GPR17 in neurons expressing the cellular stress marker heat shock protein 70. Magnetic Resonance Imaging in living mice showed that the in vivo pharmacological or biotechnological knock down of GPR17 markedly prevents brain infarct evolution, suggesting GPR17 as a mediator of neuronal death at this early ischemic stage. At later times after ischemia, GPR17 immunolabeling appeared on microglia/macrophages infiltrating the lesioned area to indicate that GPR17 may also acts as a player in the remodeling of brain circuitries by microglia. At this later stage, parenchymal GPR17 + oligodendrocyte progenitors started proliferating in the peri-injured area, suggesting initiation of remyelination. To confirm a specific role for GPR17 in oligodendrocyte differentiation, the in vitro exposure of cortical pre-oligodendrocytes to the GPR17 endogenous ligands UDPglucose and LTD 4 promoted the expression of myelin basic protein, confirming progression toward mature oligodendrocytes. Thus, GPR17 may act as a ''sensor'' that is activated upon brain injury on several embryonically distinct cell types, and may play a key role in both inducing neuronal death inside the ischemic core and in orchestrating the local remodeling/repair response. Specifically, we suggest GPR17 as a novel target for therapeutic manipulation to foster repair of demyelinating wounds, the types of lesions that also occur in patients with multiple sclerosis.
Journal of Neuroscience, 2012
In the adult mammalian subventricular zone (SVZ), GFAP-positive neural stem cells (NSCs) generate... more In the adult mammalian subventricular zone (SVZ), GFAP-positive neural stem cells (NSCs) generate neuroblasts that migrate tangentially along the rostral migratory stream (RMS) toward the olfactory bulb (OB). In the mouse brain, we found that the plasticity inhibitors Nogo-A and Nogo receptor 1 (NgR1) are differentially expressed in the SVZ-OB system, in which Nogo-A identifies immature neuroblasts and NgR1 germinal astrocytes. We therefore examined the role of Nogo-A and NgR1 in the regulation of neurogenesis. Pharmacological experiments show that Nogo-66/NgR1 interaction reduces the proliferation of NSCs. This is consistent with a negative-feedback loop, in which newly generated neurons modulate cell division of SVZ stem cells. Moreover, the Nogo-A-Δ20 domain promotes neuroblast migration toward the OB through activation of the Rho/ROCK (Rho-associated, coiled-coil containing protein kinase) pathway, without the participation of NgR1. Our findings reveal a new unprecedented function for Nogo-A and NgR1 in the homeostatic regulation of the pace of neurogenesis in the adult mouse SVZ and in the migration of neuroblasts along the RMS.
Progress in Neurobiology, 2004
In the adult brain, different neuronal populations display different degrees of plasticity. Here,... more In the adult brain, different neuronal populations display different degrees of plasticity. Here, we describe the highly different plastic properties of inferior olivary neurones and Purkinje cells. Olivary neurones show a basal expression of growth-associated proteins, such as GAP-43 and Krox24/EGR-1, and remarkable remodelling capabilities of their terminal arbour. They also regenerate their transected neurites into growth-permissive territories and may reinnervate the lost target. Sprouting and regrowing olivary axons are able to follow specific positional information cues to establish new connections according to the original projection map. In addition, they set a strong cell body reaction to injury, which in specific olivary subsets is regulated by inhibitory target-derived cues. In contrast, Purkinje cells do not have a constitutive level of growth-associated genes, and show little cell body reaction, no axonal regeneration after axotomy, and weak sprouting capabilities. Block of myelin-derived signals allows terminal arbour remodelling, but not regeneration, while selective over-expression of GAP-43 induces axonal sprouting along the axonal surface and at the level of the lesion. We suggest that the high constitutive intrinsic plasticity of the inferior olive neurones allows their terminal arbour to sustain the activity-dependent ongoing competition with the parallel fibres in order to maintain the post-synaptic territory, and possibly underlies mechanisms of learning and memory. Such a plasticity is used also as a reparative mechanism following axotomy. In contrast, in Purkinje cells, poor intrinsic regenerative capabilities and myelin-derived signals stabilise the mature connectivity and prevent axonal regeneration after lesion.
Journal of Biological Chemistry, 2013
Background: GPR17 is a key player in oligodendrocyte differentiation. By regulating the availabil... more Background: GPR17 is a key player in oligodendrocyte differentiation. By regulating the availability of receptors at the cell surface, agonist-induced GPR17 trafficking may influence terminal cell fate. Results: UDP-glucose and LTD 4 induce GPR17 endocytosis and distribution in lysosomes or recycling compartments. Conclusion: Agonist-activated GPR17 undergoes partial degradation and fast membrane recycling. Significance: Understanding GPR17 trafficking may increase our knowledge of oligodendrocyte differentiation and myelination.
Glia, 2006
Astrocytes are thought to play a variety of key roles in the adult brain, such as their participa... more Astrocytes are thought to play a variety of key roles in the adult brain, such as their participation in synaptic transmission, in wound healing upon brain injury, and adult neurogenesis. However, to elucidate these functions in vivo has been difficult because of the lack of astrocyte-specific gene targeting. Here we show that the inducible form of Cre (CreERT2) expressed in the locus of the astrocyte-specific glutamate transporter (GLAST) allows precisely timed gene deletion in adult astrocytes as well as radial glial cells at earlier developmental stages. Moreover, postnatal and adult neurogenesis can be targeted at different stages with high efficiency as it originates from astroglial cells. Taken together, this mouse line will allow dissecting the molecular pathways regulating the diverse functions of astrocytes as precursors, support cells, repair cells, and cells involved in neuronal information processing.
European Journal of Neuroscience, 2003
Successful axon regeneration relies on the capability of the lesioned neurons to up-regulate a sp... more Successful axon regeneration relies on the capability of the lesioned neurons to up-regulate a speci®c set of injury/growth-associated genes. In the adult central nervous system, the strength of the cell body response is generally related to the distance of the injury site from the perikaryon, being stronger for proximal lesions. Nevertheless, inferior olive (IO) cells react to injury and regenerate their axons even after distal transections. To investigate the mechanisms that regulate the IO growth properties, we examined the expression of injury/growth markers (nitric oxide synthase, growth-associated protein 43 and c-Jun) after target deletion or axotomy performed at different sites along the olivocerebellar pathway. Both axon injury and target loss disclose two subsets of IO neurons distributed within precise subnuclei: one subset up-regulates all markers in all conditions, whereas the other shows a mild c-Jun expression but remains unresponsive even after a very proximal axotomy. These observations indicate that distinct subpopulations of IO cells respond to different regulatory strategies. Unresponsive neurons appear insensitive to environmental positive or negative cues, suggesting that they are intrinsically unable to set up a cellular reaction to injury. In contrast, cell body changes in reactive neurons are elicited after the removal of retrogradely transported target-derived inhibitory signals. Target loss also induces degeneration of IO cells, whose survival remains partially dependent on Purkinje targets in adulthood. Thus, the intrinsic regenerative potential of a functionally homogeneous population is regulated by multiple mechanisms, speci®c for distinct neuronal subsets.
Annals of the New York Academy of Sciences, 2007
spine formation. Coincidentally, the olivary terminals belonging to the few survived olivary neur... more spine formation. Coincidentally, the olivary terminals belonging to the few survived olivary neurons undergo an extensive collateral sprouting resulting in reinnervation of the neighboring denervated PCs. We obtained chemical deafferentation of PCs in adult rats (body weight, 120-170 g; age, 35-40 days) by a single intraperitoneal injection of 3AP (65 mg/kg body weight), and as early as 3 days after 3AP treatment, important morphological changes could be observed on PCs.MAPK (mitogenactivated protein kinase) cascades and more specifically extracellular signal-regulated kinases 1/2 (ERK1/2) play a critical role in the signaling events underlying synaptic plasticity. For instance, long-term depression (LTD) in the adult hippocampus and long-term potentiation (LTP) in cerebellum both involve ERK activation. Since PCs deprived of their climbing fibers (CF) afferents initiate an intensive remodeling Q1 of the spines and rapid recall of the remaining CFs, it prompted us to see whether the observed phenomena correlated with MAPK and Akt activation.Immunohistochemistry and Western blotting were done at various time points after 3AP application (from 24 h to 6 days), as the exact dynamics of CF loss is not precisely known. As judged by Western blotting, there was no increase of activated ERK in the cerebellum. However, immunohistochemistry revealed increased ERK phosphorylation in the "pinceaux" of basket cells in 3AP animals. Similarly, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), p38 MAPK, and Akt activation were also studied by means of Western :1156 2 ANNALS NEW YORK ACADEMY OF SCIENCES blotting and immunohistochemistry. Upon 3AP treatment no changes in phosphorylation status could be seen in the different kinases subjected to analysis. Our results suggest that activation of MAPK and Akt cascades is not essential in this model of neuronal plasticity.
Annals of the New York Academy of Sciences, 2005
The mitogen-activated protein kinases (MAPKs) are a family of signal transduction mediators that ... more The mitogen-activated protein kinases (MAPKs) are a family of signal transduction mediators that regulate a number of cellular activities, including cell growth and proliferation, differentiation and survival, via phosphorylation (activation) of protein kinases. MAPKs are also recruited during synaptic plasticity and remodeling. In the present study we used Western blotting and immunohistochemistry to examine the effects of harmaline administration on the phosphorylation state of three MAPKs: the extracellular signalregulated kinase (ERK1/2), c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK), and p38 MAPK. Harmaline is a tremorigenic drug known to induce enhanced and rhythmic firing of the inferior olive. In rats, synchronous activity of the inferior olive cells induced by harmaline administered for four days from postnatal day 9 to 12 resulted in prolonged maintenance of polyinnervation of Purkinje cells by climbing fibers (axons of olivary cells). Immunohistochemistry showed small but sustained cytoplasmic positivity to phospho-ERK in Purkinje cells and a strong signal for phospho-ERK in the "pinceaux," terminals of the interneuronal basket cells onto Purkinje cells. A similar pattern was observed for JNK/SAPK, while no changes in p38 were noticed. Thus, it was revealed that the activation of two members of the MAPK family in these inhibitory presynaptic terminals is also one consequence of synchronous olivary input to Purkinje cells known to affect developmental plasticity.
Alzheimer's & Dementia, 2009
Following axotomy, cerebellar Purkinje cells (PCs) do not elongate their axons, even in a favoura... more Following axotomy, cerebellar Purkinje cells (PCs) do not elongate their axons, even in a favourable environment, and are resistant to death. They have no constitutive presence of common growth-associated proteins, such as GAP-43 and c-Jun Previous experiments show that injured transgenic PCs overexpressing GAP-43 exhibit a profuse sprouting along the axon and at its severed end. Nevertheless, the lesioned axons are unable to regenerate either spontaneously or into growth-permissive environments. In addition, a considerable number of GAP-43 transgenic PCs degenerate after injury. c-Jun is an inducible transcription factor expressed in axotomized central neurons and regenerating peripheral neurons. It also contributes to programmed cell death during development. To test whether c-Jun could modify the response of PCs to axotomy or enhance the growth/death phenomena of GAP-43 Purkinje neurons, we generated transgenic mice overexpressing c-Jun in PCs. However, c-Jun upregulation did not affect the adult intact phenotype of these neurons and their regenerative and survival capabilities after axotomy. Also in the cross-bred GAP-43/c-Jun mice, c-Jun did not modify the response of GAP-43 PCs to axotomy. By contrast, in organotypic cultures of cerebellum taken from 9-day-old-pups, the survival capabilities of PCs overexpressing c-Jun decreased, in association with a consistent c-Jun phosphorylation. On the whole our data show that c-Jun alone is unable to trigger regenerative or degenerative phenomena in PCs and suggest that the cellular action of this early gene in developing and mature neurons strongly depends on interplaying intracellular signals.