Ali JAFFAL - Academia.edu (original) (raw)
Uploads
Papers by Ali JAFFAL
Nanoscale, Oct 21, 2021
Nanowire (NW)-based opto-electronic devices require certain engineering in the NW geometry to rea... more Nanowire (NW)-based opto-electronic devices require certain engineering in the NW geometry to realize polarized-dependent light sources and photodetectors. We present a growth procedure to produce InAs/InP quantum dot-nanowires (QD-NWs) with an elongated top-view crosssection relying on the vapor-liquid-solid method using molecular beam epitaxy. By interrupting the rotation of the sample during the radial growth sequence of the InP shell, hexagonal asymmetric (HA) NWs with long/short cross-section axes were obtained instead of the usual symmetrical shape. Polarization-resolved photoluminescence measurements have revealed a significant influence of the asymmetric shaped NWs on the InAs QD emission polarization with the photons being mainly polarized parallel to the NW long cross-section axis. A degree of linear polarization (DLP) up to 91% is obtained, being at the state of the art for the reported DLP values from QD-NWs. More importantly, the growth protocol herein is fully compatible with the current applications of HA NWs covering a wide range of devices such as polarized light emitting diodes and photodetectors.
Nanoscale, 2021
Nanowire (NW)-based opto-electronic devices require certain engineering in the NW geometry to rea... more Nanowire (NW)-based opto-electronic devices require certain engineering in the NW geometry to realize polarized-dependent light sources and photodetectors. We present a growth procedure to produce InAs/InP quantum dot-nanowires (QD-NWs) with...
Nanotechnology, 2020
A procedure to achieve the density-controlled growth of gold-catalyzed InP nanowires (NWs) on (11... more A procedure to achieve the density-controlled growth of gold-catalyzed InP nanowires (NWs) on (111) silicon substrates using the vapor-liquid-solid method by molecular beam epitaxy is reported. We develop an effective and mask-free method based on controlling the number and the size of the Au-In catalyst droplets in addition to the conditions for the NW nucleation. We show that the NW density can be tuned with values in the range of 18 µm-2 to < 0.1 µm-2 by the suitable choice of the In/Au catalyst beam equivalent pressure (BEP) ratio, by the phosphorous BEP and the growth temperature. The same degree of control is transferred to InAs/InP quantum dot-nanowires, taking advantage of the ultra-low density to study by micro-photoluminescence the optical properties of a single quantum dot-nanowires emitting in the telecom band monolithically grown on silicon. Optical spectroscopy at cryogenic temperature successfully confirmed the relevance of our method to excite single InAs quantum dots on the as-grown sample, which opens the path for large-scale applications based on single quantum dot-nanowire devices integrated on silicon.
Nanotechnology, 2020
The propagation of sidewall steps during the growth of nanowires is calculated in the frame of th... more The propagation of sidewall steps during the growth of nanowires is calculated in the frame of the Burton-Cabrera-Frank model. The stable shape of the nanowire comprises a cylinder section on top of a cone section: their characteristics are obtained as a function of the radius of the catalystnanowire area, the desorption-limited diffusion length of adatoms on the terraces, and the sticking of adatoms at step edges. The comparison with experimental data allows us to evaluate these last two parameters for InP and ZnTe nanowires; it reveals a different behavior for the two materials, related to a difference by an order of magnitude of the desorption-limited diffusion length.
Nanoscale, 2019
Fabrication of a NW-based single photon source on silicon emitting in the telecom band with a Gau... more Fabrication of a NW-based single photon source on silicon emitting in the telecom band with a Gaussian far-field emission profile.
Gold Bulletin, 2017
This work presents a new and simple procedure for the shape selective purification of gold nanoro... more This work presents a new and simple procedure for the shape selective purification of gold nanorods from a mixture of rods and spheres. Previously reported methods were time-consuming and revealed several drawbacks such as low yields and difficulty to recover the purified nanoparticles. Additionally, they were mostly applied to high aspect ratio (AR) nanorods. Our process is based on only simple and short centrifugation steps in order to precipitate specifically gold nanospheres. Samples containing low AR nanorods (AR < 6) were selected to perform the purification process. The supernatant content was followed by UV-Visible absorption spectroscopy after each centrifugation step. Then, transmission electron microscopy (TEM) allowed extract the purification efficiency thanks to shape analyses performed on more than 1000 nanoparticles. These results showed that our centrifugation process was applied successfully to three sizes of nanorods (2.4, 3.7, and 5.3). High purification yields of 72 and 78% were attained for AR = 3.7 and AR = 5.3 nanorods, respectively.
RSC Advances, 2017
SHG-active SiC nanoparticles were modified with folic acid for cancer-cell-specific labelling.
Nanoscale, Oct 21, 2021
Nanowire (NW)-based opto-electronic devices require certain engineering in the NW geometry to rea... more Nanowire (NW)-based opto-electronic devices require certain engineering in the NW geometry to realize polarized-dependent light sources and photodetectors. We present a growth procedure to produce InAs/InP quantum dot-nanowires (QD-NWs) with an elongated top-view crosssection relying on the vapor-liquid-solid method using molecular beam epitaxy. By interrupting the rotation of the sample during the radial growth sequence of the InP shell, hexagonal asymmetric (HA) NWs with long/short cross-section axes were obtained instead of the usual symmetrical shape. Polarization-resolved photoluminescence measurements have revealed a significant influence of the asymmetric shaped NWs on the InAs QD emission polarization with the photons being mainly polarized parallel to the NW long cross-section axis. A degree of linear polarization (DLP) up to 91% is obtained, being at the state of the art for the reported DLP values from QD-NWs. More importantly, the growth protocol herein is fully compatible with the current applications of HA NWs covering a wide range of devices such as polarized light emitting diodes and photodetectors.
Nanoscale, 2021
Nanowire (NW)-based opto-electronic devices require certain engineering in the NW geometry to rea... more Nanowire (NW)-based opto-electronic devices require certain engineering in the NW geometry to realize polarized-dependent light sources and photodetectors. We present a growth procedure to produce InAs/InP quantum dot-nanowires (QD-NWs) with...
Nanotechnology, 2020
A procedure to achieve the density-controlled growth of gold-catalyzed InP nanowires (NWs) on (11... more A procedure to achieve the density-controlled growth of gold-catalyzed InP nanowires (NWs) on (111) silicon substrates using the vapor-liquid-solid method by molecular beam epitaxy is reported. We develop an effective and mask-free method based on controlling the number and the size of the Au-In catalyst droplets in addition to the conditions for the NW nucleation. We show that the NW density can be tuned with values in the range of 18 µm-2 to < 0.1 µm-2 by the suitable choice of the In/Au catalyst beam equivalent pressure (BEP) ratio, by the phosphorous BEP and the growth temperature. The same degree of control is transferred to InAs/InP quantum dot-nanowires, taking advantage of the ultra-low density to study by micro-photoluminescence the optical properties of a single quantum dot-nanowires emitting in the telecom band monolithically grown on silicon. Optical spectroscopy at cryogenic temperature successfully confirmed the relevance of our method to excite single InAs quantum dots on the as-grown sample, which opens the path for large-scale applications based on single quantum dot-nanowire devices integrated on silicon.
Nanotechnology, 2020
The propagation of sidewall steps during the growth of nanowires is calculated in the frame of th... more The propagation of sidewall steps during the growth of nanowires is calculated in the frame of the Burton-Cabrera-Frank model. The stable shape of the nanowire comprises a cylinder section on top of a cone section: their characteristics are obtained as a function of the radius of the catalystnanowire area, the desorption-limited diffusion length of adatoms on the terraces, and the sticking of adatoms at step edges. The comparison with experimental data allows us to evaluate these last two parameters for InP and ZnTe nanowires; it reveals a different behavior for the two materials, related to a difference by an order of magnitude of the desorption-limited diffusion length.
Nanoscale, 2019
Fabrication of a NW-based single photon source on silicon emitting in the telecom band with a Gau... more Fabrication of a NW-based single photon source on silicon emitting in the telecom band with a Gaussian far-field emission profile.
Gold Bulletin, 2017
This work presents a new and simple procedure for the shape selective purification of gold nanoro... more This work presents a new and simple procedure for the shape selective purification of gold nanorods from a mixture of rods and spheres. Previously reported methods were time-consuming and revealed several drawbacks such as low yields and difficulty to recover the purified nanoparticles. Additionally, they were mostly applied to high aspect ratio (AR) nanorods. Our process is based on only simple and short centrifugation steps in order to precipitate specifically gold nanospheres. Samples containing low AR nanorods (AR < 6) were selected to perform the purification process. The supernatant content was followed by UV-Visible absorption spectroscopy after each centrifugation step. Then, transmission electron microscopy (TEM) allowed extract the purification efficiency thanks to shape analyses performed on more than 1000 nanoparticles. These results showed that our centrifugation process was applied successfully to three sizes of nanorods (2.4, 3.7, and 5.3). High purification yields of 72 and 78% were attained for AR = 3.7 and AR = 5.3 nanorods, respectively.
RSC Advances, 2017
SHG-active SiC nanoparticles were modified with folic acid for cancer-cell-specific labelling.