Andrea Ilari - Academia.edu (original) (raw)
Papers by Andrea Ilari
Amino Acids, 2017
Huntington's disease (HD) or Huntington's chorea ... more Huntington's disease (HD) or Huntington's chorea is the most common inherited, dominantly transmitted, neurodegenerative disorder. It is caused by increased CAG repeats number in the gene coding for huntingtin (Htt) and characterized by motor, behaviour and psychiatric symptoms, ultimately leading to death. HD patients also exhibit alterations in glucose and energetic metabolism, which result in pronounced weight loss despite sustained calorie intake. Glucose metabolism decreases in the striatum of all the subjects with mutated Htt, but affects symptom presentation only when it drops below a specific threshold. Recent evidence points at defects in glucose uptake by the brain, and especially by neurons, as a relevant component of central glucose hypometabolism in HD patients. Here we review the main features of glucose metabolism and transport in the brain in physiological conditions and how these processes are impaired in HD, and discuss the potential ability of strategies aimed at increasing intracellular energy levels to counteract neurological and motor degeneration in HD patients.
Future Medicinal Chemistry, 2017
In trypanosomatids, polyamine and trypanothione pathways can be considered as a whole unique meta... more In trypanosomatids, polyamine and trypanothione pathways can be considered as a whole unique metabolism, where most enzymes are essential for parasitic survival and infectivity. Leishmania parasites and all the other members of the Trypanosomatids family depend on polyamines for growth and survival: the enzymes involved in the synthesis and utilization of spermidine and trypanothione, i.e., arginase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase and in particular trypanothione synthetase-amidase, trypanothione reductase and tryparedoxin-dependent peroxidase are promising targets for drug development. This review deals with recent structure-based studies on these enzymes, aimed at the discovery of inhibitors of this pathway.
Plos Neglected Tropical Diseases, Aug 1, 2012
Leishmaniasis is a neglected disease caused by Leishmania, an intracellular protozoan parasite wh... more Leishmaniasis is a neglected disease caused by Leishmania, an intracellular protozoan parasite which possesses a unique thiol metabolism based on trypanothione. Trypanothione is used as a source of electrons by the tryparedoxin/tryparedoxin peroxidase system (TXN/TXNPx) to reduce the hydroperoxides produced by macrophages during infection. This detoxification pathway is not only unique to the parasite but is also essential for its survival; therefore, it constitutes a most attractive drug target. Several forms of TXNPx, with very high sequence identity to one another, have been found in Leishmania strains, one of which has been used as a component of a potential anti-leishmanial polyprotein vaccine. The structures of cytosolic TXN and TXNPx from L. major (LmTXN and LmTXNPx) offer a unique opportunity to study peroxide reduction in Leishmania parasites at a molecular level, and may provide new tools for multienzyme inhibition-based drug discovery. Structural analyses bring out key structural features to elucidate LmTXN and LmTXNPx function. LmTXN displays an unusual N-terminal α-helix which allows the formation of a stable domain-swapped dimer. In LmTXNPx, crystallized in reducing condition, both the locally unfolded (LU) and fully folded (FF) conformations, typical of the oxidized and reduced protein respectively, are populated. The structural analysis presented here points to a high flexibility of the loop that includes the peroxidatic cysteine which facilitates Cys52 to form an inter-chain disulfide bond with the resolving cysteine (Cys173), thereby preventing over-oxidation which would inactivate the enzyme. Analysis of the electrostatic surface potentials of both LmTXN and LmTXNPx unveils the structural elements at the basis of functionally relevant interaction between the two proteins. Finally, the structural analysis of TXNPx allows us to identify the position of the epitopes that make the protein antigenic and therefore potentially suitable to be used in an anti-leishmanial polyprotein vaccine.
Journal of Chemical Information and Modeling, 2015
Giardiasis is a gastrointestinal diarrheal illness caused by the protozoan parasite Giardia duode... more Giardiasis is a gastrointestinal diarrheal illness caused by the protozoan parasite Giardia duodenalis, which affects annually over 200 million people worldwide. The limited antigiardial drug arsenal and the emergence of clinical cases refractory to standard treatments dictate the need for new chemotherapeutics. The 14-3-3 family of regulatory proteins, extensively involved in protein-protein interactions (PPIs) with pSer/pThr clients, represents a highly promising target. Despite homology with human counterparts, the single 14-3-3 of G. duodenalis (g14-3-3) is characterized by a constitutive phosphorylation in a region critical for target binding, thus affecting the function and the conformation of g14-3-3/clients interaction. However, to approach the design of specific small molecule modulators of g14-3-3 PPIs, structural elucidations are required. Here, we present a detailed computational and crystallographic study exploring the implications of g14-3-3 phosphorylation on protein structure and target binding. Self-Guided Langevin Dynamics and classical molecular dynamics simulations show that phosphorylation affects locally and globally g14-3-3 conformation, inducing a structural rearrangement more suitable for target binding. Profitable features for g14-3-3/clients interaction were highlighted using a hydrophobicity-based descriptor to characterize g14-3-3 client peptides. Finally, the X-ray structure of g14-3-3 in complex with a mode-1 prototype phosphopeptide was solved and combined with structure-based simulations to identify molecular features relevant for clients binding to g14-3-3. The data presented herein provide a further and structural understanding of g14-3-3 features and set the basis for drug design studies.
Scientific Reports, 2015
Sorcin is an essential penta-EF hand calcium binding protein, able to confer the multi-drug resis... more Sorcin is an essential penta-EF hand calcium binding protein, able to confer the multi-drug resistance phenotype to drug-sensitive cancer cells and to reduce Endoplasmic Reticulum stress and cell death. Sorcin silencing blocks cell cycle progression in mitosis and induces cell death by triggering apoptosis. Sorcin participates in the modulation of calcium homeostasis and in calcium-dependent cell signalling in normal and cancer cells. The molecular basis of Sorcin action is yet unknown. The X-ray structures of Sorcin in the apo (apoSor) and in calcium bound form (CaSor) reveal the structural basis of Sorcin action: calcium binding to the EF1-3 hands promotes a large conformational change, involving a movement of the long D-helix joining the EF1-EF2 sub-domain to EF3 and the opening of EF1. This movement promotes the exposure of a hydrophobic pocket, which can accommodate in CaSor the portion of its N-terminal domain displaying the consensus binding motif identified by phage display experiments. This domain inhibits the interaction of sorcin with PDCD6, a protein that carries the Sorcin consensus motif, co-localizes with Sorcin in the perinuclear region of the cell and in the midbody and is involved in the onset of apoptosis.
Future Medicinal Chemistry, 2013
Encyclopedia of Metalloproteins, 2013
ChemMedChem, 2013
Herein we report a study aimed at discovering a new class of compounds that are able to inhibit L... more Herein we report a study aimed at discovering a new class of compounds that are able to inhibit Leishmania donovani cell growth. Evaluation of an in-house library of compounds in a whole-cell screening assay highlighted 4-((1-(4-ethylphenyl)-2-methyl-5-(4-(methylthio)phenyl)-1H-pyrrol-3-yl)methyl)thiomorpholine (compound 1) as the most active. Enzymatic assays on Leishmania infantum trypanothione reductase (LiTR, belonging to the Leishmania donovani complex) shed light on both the interaction with, and the nature of inhibition by, compound 1. A molecular modeling approach based on docking studies and on the estimation of the binding free energy aided our rationalization of the biological data. Moreover, X-ray crystal structure determination of LiTR in complex with compound 1 confirmed all our results: compound 1 binds to the T(SH)2 binding site, lined by hydrophobic residues such as Trp21 and Met113, as well as residues Glu18 and Tyr110. Analysis of the structure of LiTR in complex with trypanothione shows that Glu18 and Tyr110 are also involved in substrate binding, according to a competitive inhibition mechanism.
Giardia duodenalis is a microaerophilic parasite that colonizes the upper portions of the small i... more Giardia duodenalis is a microaerophilic parasite that colonizes the upper portions of the small intestine of humans. Giardia infection is a major contributor to diarrheal disease worldwide. Nitroheterocycles (e.g. metronidazole) or benzimidazoles (e.g. albendazole) are the most commonly used therapeutic agents. Unfortunately, their efficacy is reduced by low compliance or resistance phenomena. We recently discovered that the antitumoral drug 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) is active against G. duodenalis trophozoites and its mode of action is linked to inhibition of thioredoxin reductase (gTrxR), a key component of Giardia redox system: gTrxR provides efficient defenses against reactive oxygen species (ROS), it is a target of 5-nitroimidazoles antiparasitic drugs and also contributes to their metabolism. However, the exact mechanism responsible for the gTrxR inhibition mediated by this chemical class of antigiardial compounds is yet to be defined. The definition of the structural determinants of activity against gTrxR could be important for the identification of novel drugs endowed with an innovative mode of action. With this aim, we solved the crystal structure of gTrxR and we analyzed in silico the binding mode of NBDHEX. The data presented herein could guide the development of NBDHEX derivatives tailored for selective inhibition of gTrxR as antigiardial agents.
Biochemical Journal, 2000
Biochimica et Biophysica Acta (BBA) - General Subjects, 2015
Mini reviews in medicinal chemistry, 2015
Leishmaniasis is a neglected disease affecting more than 12 million people worldwide. The most us... more Leishmaniasis is a neglected disease affecting more than 12 million people worldwide. The most used drugs are pentavalent antimonials that are very toxic and display the problem of drug resistance, especially in endemic regions such as Bihar in India. For this reason, it is urgent to find new and less toxic drugs against leishmaniasis. To this end, the understanding of pathways affecting parasite survival is of prime importance for targeted drug discovery. The parasite survival inside the macrophage is strongly dependent on polyamine metabolism. Polyamines are, in fact, very important for cell growth and proliferation. In particular, spermidine (Spd), the final product of the polyamine biosynthesis pathway, serves as a precursor for trypanothione (N1,N8- bis(glutathionyl)spermidine, T(SH)2) and hypusine (N(ε)-(4-amino-2-hydroxybutyl)lysine). T(SH)2 is a key molecule for parasite defense against the hydrogen peroxide produced by macrophages during the infection. Hypusination is a pos...
Acta crystallographica. Section D, Biological crystallography, 2004
Laminarinase endo-beta-1,3 glucanase (LamA) from Pyrococcus furiosus is an enzyme which displays ... more Laminarinase endo-beta-1,3 glucanase (LamA) from Pyrococcus furiosus is an enzyme which displays its main hydrolytic activity on the 3-1,3-glucose polymer laminarin. This laminarinase is remarkably resistant to denaturation: its secondary structure is unchanged in 8 M guanidinium chloride. This protein belongs to the family 16 glycosyl hydrolases, which are enzymes that are widely distributed among bacteria, fungi and higher plants. Single crystals of P. furiosus LamAhave been obtained by the hanging-drop vapour-diffusion method using 2-methyl-2,4-pentanediol as a precipitant agent. A complete data set has been collected under cryocooling at a synchrotron source. The crystals belong to the monoclinic space group P21, with unit-cell parameters a = 44.36, b = 84.76, c = 69.23 A, a = 90, fl = 104.97, y = 90 degrees, and diffract to 2.15 A resolution.
Proteins: Structure, Function, and Bioinformatics, 2014
Serine hydroxymethyltransferases (SHMTs) play an essential role in one-carbon unit metabolism and... more Serine hydroxymethyltransferases (SHMTs) play an essential role in one-carbon unit metabolism and are used in biomimetic reactions. We determined the crystal structure of free (apo) and pyridoxal-5'-phosphate-bound (holo) SHMT from Methanocaldococcus jannaschii, the first from a hyperthermophile, from the archaea domain of life and that uses H4 MPT as a cofactor, at 2.83 and 3.0 Å resolution, respectively. Idiosyncratic features were observed that are likely to contribute to structure stabilization. At the dimer interface, the C-terminal region folds in a unique fashion with respect to SHMTs from eubacteria and eukarya. At the active site, the conserved tyrosine does not make a cation-π interaction with an arginine like that observed in all other SHMT structures, but establishes an amide-aromatic interaction with Asn257, at a different sequence position. This asparagine residue is conserved and occurs almost exclusively in (hyper)thermophile SHMTs. This led us to formulate the hypothesis that removal of frustrated interactions (such as the Arg-Tyr cation-π interaction occurring in mesophile SHMTs) is an additional strategy of adaptation to high temperature. Both peculiar features may be tested by designing enzyme variants potentially endowed with improved stability for applications in biomimetic processes.
Methods in Molecular Biology™, 2008
X-ray biocrystallography is the most powerful method to obtain a macromolecular structure. The im... more X-ray biocrystallography is the most powerful method to obtain a macromolecular structure. The improvement of computational technologies in the last years and the development of new and powerful programs to perform calculations together with the enormous increment in the number of protein structures deposited in the Protein Data Bank, render the resolution of new structures easier than in the past. The aim of this chapter is to furnish practical notions useful to solve a new structure. It is impossible to give more than a flavour of what the X-ray crystallographic technique entails in one brief chapter, therefore we focussed our attention on the Molecular Replacement method.
Mini Reviews in Medicinal Chemistry, 2013
Several chemical elements are required by living organisms in addition to the four elements carbo... more Several chemical elements are required by living organisms in addition to the four elements carbon, hydrogen, nitrogen and oxygen usually present in common organic molecules. Many metals (e.g. sodium, potassium, magnesium, calcium, iron, zinc, copper, manganese, chromium, molybdenum and selenium) are known to be required for normal biological functions in humans. Disorders of metal homeostasis and of metal bioavailability, or toxicity caused by metal excess, are responsible for a large number of human diseases. Metals are also extensively used in medicine as therapeutic and/or diagnostic agents. In the past 5000 years, metals such as arsenic, gold and iron have been used to treat a variety of human diseases. Nowadays, an ever-increasing number of metal-based drugs is available. These contain a broad spectrum of metals, many of which are not among those essential for humans, able to target proteins and/or DNA. This mini-review describes metal-containing compounds targeting DNA or proteins currently in use, or designed to be used, as therapeutics against cancer, arthritis, parasitic and other diseases, with a special focus on the available information, often provided by X-ray studies, about their mechanism of action at a molecular level. In addition, an overview of metal complexes used for diagnosing diseases is presented.
Amino Acids, 2017
Huntington's disease (HD) or Huntington's chorea ... more Huntington's disease (HD) or Huntington's chorea is the most common inherited, dominantly transmitted, neurodegenerative disorder. It is caused by increased CAG repeats number in the gene coding for huntingtin (Htt) and characterized by motor, behaviour and psychiatric symptoms, ultimately leading to death. HD patients also exhibit alterations in glucose and energetic metabolism, which result in pronounced weight loss despite sustained calorie intake. Glucose metabolism decreases in the striatum of all the subjects with mutated Htt, but affects symptom presentation only when it drops below a specific threshold. Recent evidence points at defects in glucose uptake by the brain, and especially by neurons, as a relevant component of central glucose hypometabolism in HD patients. Here we review the main features of glucose metabolism and transport in the brain in physiological conditions and how these processes are impaired in HD, and discuss the potential ability of strategies aimed at increasing intracellular energy levels to counteract neurological and motor degeneration in HD patients.
Future Medicinal Chemistry, 2017
In trypanosomatids, polyamine and trypanothione pathways can be considered as a whole unique meta... more In trypanosomatids, polyamine and trypanothione pathways can be considered as a whole unique metabolism, where most enzymes are essential for parasitic survival and infectivity. Leishmania parasites and all the other members of the Trypanosomatids family depend on polyamines for growth and survival: the enzymes involved in the synthesis and utilization of spermidine and trypanothione, i.e., arginase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase and in particular trypanothione synthetase-amidase, trypanothione reductase and tryparedoxin-dependent peroxidase are promising targets for drug development. This review deals with recent structure-based studies on these enzymes, aimed at the discovery of inhibitors of this pathway.
Plos Neglected Tropical Diseases, Aug 1, 2012
Leishmaniasis is a neglected disease caused by Leishmania, an intracellular protozoan parasite wh... more Leishmaniasis is a neglected disease caused by Leishmania, an intracellular protozoan parasite which possesses a unique thiol metabolism based on trypanothione. Trypanothione is used as a source of electrons by the tryparedoxin/tryparedoxin peroxidase system (TXN/TXNPx) to reduce the hydroperoxides produced by macrophages during infection. This detoxification pathway is not only unique to the parasite but is also essential for its survival; therefore, it constitutes a most attractive drug target. Several forms of TXNPx, with very high sequence identity to one another, have been found in Leishmania strains, one of which has been used as a component of a potential anti-leishmanial polyprotein vaccine. The structures of cytosolic TXN and TXNPx from L. major (LmTXN and LmTXNPx) offer a unique opportunity to study peroxide reduction in Leishmania parasites at a molecular level, and may provide new tools for multienzyme inhibition-based drug discovery. Structural analyses bring out key structural features to elucidate LmTXN and LmTXNPx function. LmTXN displays an unusual N-terminal α-helix which allows the formation of a stable domain-swapped dimer. In LmTXNPx, crystallized in reducing condition, both the locally unfolded (LU) and fully folded (FF) conformations, typical of the oxidized and reduced protein respectively, are populated. The structural analysis presented here points to a high flexibility of the loop that includes the peroxidatic cysteine which facilitates Cys52 to form an inter-chain disulfide bond with the resolving cysteine (Cys173), thereby preventing over-oxidation which would inactivate the enzyme. Analysis of the electrostatic surface potentials of both LmTXN and LmTXNPx unveils the structural elements at the basis of functionally relevant interaction between the two proteins. Finally, the structural analysis of TXNPx allows us to identify the position of the epitopes that make the protein antigenic and therefore potentially suitable to be used in an anti-leishmanial polyprotein vaccine.
Journal of Chemical Information and Modeling, 2015
Giardiasis is a gastrointestinal diarrheal illness caused by the protozoan parasite Giardia duode... more Giardiasis is a gastrointestinal diarrheal illness caused by the protozoan parasite Giardia duodenalis, which affects annually over 200 million people worldwide. The limited antigiardial drug arsenal and the emergence of clinical cases refractory to standard treatments dictate the need for new chemotherapeutics. The 14-3-3 family of regulatory proteins, extensively involved in protein-protein interactions (PPIs) with pSer/pThr clients, represents a highly promising target. Despite homology with human counterparts, the single 14-3-3 of G. duodenalis (g14-3-3) is characterized by a constitutive phosphorylation in a region critical for target binding, thus affecting the function and the conformation of g14-3-3/clients interaction. However, to approach the design of specific small molecule modulators of g14-3-3 PPIs, structural elucidations are required. Here, we present a detailed computational and crystallographic study exploring the implications of g14-3-3 phosphorylation on protein structure and target binding. Self-Guided Langevin Dynamics and classical molecular dynamics simulations show that phosphorylation affects locally and globally g14-3-3 conformation, inducing a structural rearrangement more suitable for target binding. Profitable features for g14-3-3/clients interaction were highlighted using a hydrophobicity-based descriptor to characterize g14-3-3 client peptides. Finally, the X-ray structure of g14-3-3 in complex with a mode-1 prototype phosphopeptide was solved and combined with structure-based simulations to identify molecular features relevant for clients binding to g14-3-3. The data presented herein provide a further and structural understanding of g14-3-3 features and set the basis for drug design studies.
Scientific Reports, 2015
Sorcin is an essential penta-EF hand calcium binding protein, able to confer the multi-drug resis... more Sorcin is an essential penta-EF hand calcium binding protein, able to confer the multi-drug resistance phenotype to drug-sensitive cancer cells and to reduce Endoplasmic Reticulum stress and cell death. Sorcin silencing blocks cell cycle progression in mitosis and induces cell death by triggering apoptosis. Sorcin participates in the modulation of calcium homeostasis and in calcium-dependent cell signalling in normal and cancer cells. The molecular basis of Sorcin action is yet unknown. The X-ray structures of Sorcin in the apo (apoSor) and in calcium bound form (CaSor) reveal the structural basis of Sorcin action: calcium binding to the EF1-3 hands promotes a large conformational change, involving a movement of the long D-helix joining the EF1-EF2 sub-domain to EF3 and the opening of EF1. This movement promotes the exposure of a hydrophobic pocket, which can accommodate in CaSor the portion of its N-terminal domain displaying the consensus binding motif identified by phage display experiments. This domain inhibits the interaction of sorcin with PDCD6, a protein that carries the Sorcin consensus motif, co-localizes with Sorcin in the perinuclear region of the cell and in the midbody and is involved in the onset of apoptosis.
Future Medicinal Chemistry, 2013
Encyclopedia of Metalloproteins, 2013
ChemMedChem, 2013
Herein we report a study aimed at discovering a new class of compounds that are able to inhibit L... more Herein we report a study aimed at discovering a new class of compounds that are able to inhibit Leishmania donovani cell growth. Evaluation of an in-house library of compounds in a whole-cell screening assay highlighted 4-((1-(4-ethylphenyl)-2-methyl-5-(4-(methylthio)phenyl)-1H-pyrrol-3-yl)methyl)thiomorpholine (compound 1) as the most active. Enzymatic assays on Leishmania infantum trypanothione reductase (LiTR, belonging to the Leishmania donovani complex) shed light on both the interaction with, and the nature of inhibition by, compound 1. A molecular modeling approach based on docking studies and on the estimation of the binding free energy aided our rationalization of the biological data. Moreover, X-ray crystal structure determination of LiTR in complex with compound 1 confirmed all our results: compound 1 binds to the T(SH)2 binding site, lined by hydrophobic residues such as Trp21 and Met113, as well as residues Glu18 and Tyr110. Analysis of the structure of LiTR in complex with trypanothione shows that Glu18 and Tyr110 are also involved in substrate binding, according to a competitive inhibition mechanism.
Giardia duodenalis is a microaerophilic parasite that colonizes the upper portions of the small i... more Giardia duodenalis is a microaerophilic parasite that colonizes the upper portions of the small intestine of humans. Giardia infection is a major contributor to diarrheal disease worldwide. Nitroheterocycles (e.g. metronidazole) or benzimidazoles (e.g. albendazole) are the most commonly used therapeutic agents. Unfortunately, their efficacy is reduced by low compliance or resistance phenomena. We recently discovered that the antitumoral drug 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) is active against G. duodenalis trophozoites and its mode of action is linked to inhibition of thioredoxin reductase (gTrxR), a key component of Giardia redox system: gTrxR provides efficient defenses against reactive oxygen species (ROS), it is a target of 5-nitroimidazoles antiparasitic drugs and also contributes to their metabolism. However, the exact mechanism responsible for the gTrxR inhibition mediated by this chemical class of antigiardial compounds is yet to be defined. The definition of the structural determinants of activity against gTrxR could be important for the identification of novel drugs endowed with an innovative mode of action. With this aim, we solved the crystal structure of gTrxR and we analyzed in silico the binding mode of NBDHEX. The data presented herein could guide the development of NBDHEX derivatives tailored for selective inhibition of gTrxR as antigiardial agents.
Biochemical Journal, 2000
Biochimica et Biophysica Acta (BBA) - General Subjects, 2015
Mini reviews in medicinal chemistry, 2015
Leishmaniasis is a neglected disease affecting more than 12 million people worldwide. The most us... more Leishmaniasis is a neglected disease affecting more than 12 million people worldwide. The most used drugs are pentavalent antimonials that are very toxic and display the problem of drug resistance, especially in endemic regions such as Bihar in India. For this reason, it is urgent to find new and less toxic drugs against leishmaniasis. To this end, the understanding of pathways affecting parasite survival is of prime importance for targeted drug discovery. The parasite survival inside the macrophage is strongly dependent on polyamine metabolism. Polyamines are, in fact, very important for cell growth and proliferation. In particular, spermidine (Spd), the final product of the polyamine biosynthesis pathway, serves as a precursor for trypanothione (N1,N8- bis(glutathionyl)spermidine, T(SH)2) and hypusine (N(ε)-(4-amino-2-hydroxybutyl)lysine). T(SH)2 is a key molecule for parasite defense against the hydrogen peroxide produced by macrophages during the infection. Hypusination is a pos...
Acta crystallographica. Section D, Biological crystallography, 2004
Laminarinase endo-beta-1,3 glucanase (LamA) from Pyrococcus furiosus is an enzyme which displays ... more Laminarinase endo-beta-1,3 glucanase (LamA) from Pyrococcus furiosus is an enzyme which displays its main hydrolytic activity on the 3-1,3-glucose polymer laminarin. This laminarinase is remarkably resistant to denaturation: its secondary structure is unchanged in 8 M guanidinium chloride. This protein belongs to the family 16 glycosyl hydrolases, which are enzymes that are widely distributed among bacteria, fungi and higher plants. Single crystals of P. furiosus LamAhave been obtained by the hanging-drop vapour-diffusion method using 2-methyl-2,4-pentanediol as a precipitant agent. A complete data set has been collected under cryocooling at a synchrotron source. The crystals belong to the monoclinic space group P21, with unit-cell parameters a = 44.36, b = 84.76, c = 69.23 A, a = 90, fl = 104.97, y = 90 degrees, and diffract to 2.15 A resolution.
Proteins: Structure, Function, and Bioinformatics, 2014
Serine hydroxymethyltransferases (SHMTs) play an essential role in one-carbon unit metabolism and... more Serine hydroxymethyltransferases (SHMTs) play an essential role in one-carbon unit metabolism and are used in biomimetic reactions. We determined the crystal structure of free (apo) and pyridoxal-5'-phosphate-bound (holo) SHMT from Methanocaldococcus jannaschii, the first from a hyperthermophile, from the archaea domain of life and that uses H4 MPT as a cofactor, at 2.83 and 3.0 Å resolution, respectively. Idiosyncratic features were observed that are likely to contribute to structure stabilization. At the dimer interface, the C-terminal region folds in a unique fashion with respect to SHMTs from eubacteria and eukarya. At the active site, the conserved tyrosine does not make a cation-π interaction with an arginine like that observed in all other SHMT structures, but establishes an amide-aromatic interaction with Asn257, at a different sequence position. This asparagine residue is conserved and occurs almost exclusively in (hyper)thermophile SHMTs. This led us to formulate the hypothesis that removal of frustrated interactions (such as the Arg-Tyr cation-π interaction occurring in mesophile SHMTs) is an additional strategy of adaptation to high temperature. Both peculiar features may be tested by designing enzyme variants potentially endowed with improved stability for applications in biomimetic processes.
Methods in Molecular Biology™, 2008
X-ray biocrystallography is the most powerful method to obtain a macromolecular structure. The im... more X-ray biocrystallography is the most powerful method to obtain a macromolecular structure. The improvement of computational technologies in the last years and the development of new and powerful programs to perform calculations together with the enormous increment in the number of protein structures deposited in the Protein Data Bank, render the resolution of new structures easier than in the past. The aim of this chapter is to furnish practical notions useful to solve a new structure. It is impossible to give more than a flavour of what the X-ray crystallographic technique entails in one brief chapter, therefore we focussed our attention on the Molecular Replacement method.
Mini Reviews in Medicinal Chemistry, 2013
Several chemical elements are required by living organisms in addition to the four elements carbo... more Several chemical elements are required by living organisms in addition to the four elements carbon, hydrogen, nitrogen and oxygen usually present in common organic molecules. Many metals (e.g. sodium, potassium, magnesium, calcium, iron, zinc, copper, manganese, chromium, molybdenum and selenium) are known to be required for normal biological functions in humans. Disorders of metal homeostasis and of metal bioavailability, or toxicity caused by metal excess, are responsible for a large number of human diseases. Metals are also extensively used in medicine as therapeutic and/or diagnostic agents. In the past 5000 years, metals such as arsenic, gold and iron have been used to treat a variety of human diseases. Nowadays, an ever-increasing number of metal-based drugs is available. These contain a broad spectrum of metals, many of which are not among those essential for humans, able to target proteins and/or DNA. This mini-review describes metal-containing compounds targeting DNA or proteins currently in use, or designed to be used, as therapeutics against cancer, arthritis, parasitic and other diseases, with a special focus on the available information, often provided by X-ray studies, about their mechanism of action at a molecular level. In addition, an overview of metal complexes used for diagnosing diseases is presented.