Anna Varghese - Academia.edu (original) (raw)

Uploads

Papers by Anna Varghese

Research paper thumbnail of Radiation doses and estimated risk from angiographic projections during coronary angiography performed using novel flat detector

Coronary angiography (CA) procedure uses various angiographic projections to elicit detailed info... more Coronary angiography (CA) procedure uses various angiographic projections to elicit detailed information of the coronary arteries with some steep projections involving high radiation dose to patients. This study intends to evaluate radiation doses and estimated risk from angiographic projections during CA procedure performed using novel flat detector (FD) system with improved image processing and noise reduction techniques. Real-time monitoring of radiation doses using kerma-area product (KAP) meter was performed for 140 patients using Philips Clarity FD system. The CA procedure involved seven standard projections, of which five were extensively selected by interventionalists. Mean fluoroscopic time (FT), KAP, and reference air kerma (Ka,r) for CA procedure were 3.24 min (0.5-10.51), 13.99 Gycm 2 (4.02-37.6), and 231.43 mGy (73.8-622.15), respectively. Effective dose calculated using Monte Carlo-based PCXMC software was found to be 4.9 mSv. Left anterior oblique (LAO) 45° projection contributed the highest radiation dose (28%) of the overall KAP. Radiation-induced risk was found to be higher in females compared to males with increased risk of lung cancer. An increase of 10%-15% in radiation dose was observed when one or more additional projections were adopted along with the seven standard projections. A 14% reduction of radiation dose was achieved from novel FD system when low-dose protocol during fluoroscopy and medium-dose protocol during cine acquisitions were adopted, compared to medium-dose protocol.

Research paper thumbnail of Radiation doses and estimated risk from angiographic projections during coronary angiography performed using novel flat detector

Journal of applied clinical medical physics / American College of Medical Physics, Jan 8, 2016

Coronary angiography (CA) procedure uses various angiographic projections to elicit detailed info... more Coronary angiography (CA) procedure uses various angiographic projections to elicit detailed information of the coronary arteries with some steep projections involving high radiation dose to patients. This study intends to evaluate radiation doses and estimated risk from angiographic projections during CA procedure performed using novel flat detector (FD) system with improved image processing and noise reduction techniques. Real-time monitoring of radiation doses using kerma-area product (KAP) meter was performed for 140 patients using Philips Clarity FD system. The CA procedure involved seven standard projections, of which five were extensively selected by interventionalists. Mean fluoroscopic time (FT), KAP, and reference air kerma (Ka,r) for CA procedure were 3.24 min (0.5-10.51), 13.99Gycm2 (4.02-37.6), and 231.43 mGy (73.8-622.15), respectively. Effective dose calculated using Monte Carlo-based PCXMC software was found to be 4.9mSv. Left anterior oblique (LAO) 45° projection co...

Research paper thumbnail of Transition from image intensifier to flat panel detector in interventional cardiology: Impact of radiation dose

Journal of Medical Physics, 2015

Flat panel detector (FPD) technology in interventional cardiology is on the increase due to its v... more Flat panel detector (FPD) technology in interventional cardiology is on the increase due to its varied advantages compared to the conventional image intensifier (II) systems. It is not clear whether FPD imparts lower radiation doses compared to II systems though a few studies support this finding. This study intends to compare radiation doses from II and FPD systems for coronaryangiography (CAG) and Percutaneous Transluminal Coronary Angioplasty (PTCA) performed in a tertiary referral center. Radiation doses were measured using dose area product (DAP) meter from patients who underwent CAG (n = 222) and PTCA (n = 75) performed using FPD angiography system. The DAP values from FPD were compared with earlier reported data using II systems from the same referral center where the study was conducted. The mean DAP values from FPD system for CAG and PTCA were 24.35 and 63.64 Gycm(2) and those from II system were 27.71 and 65.44 Gycm(2). Transition from II to FPD system requires stringent dose optimization strategies right from the initial period of installation.

Research paper thumbnail of Radiation doses and estimated risk from angiographic projections during coronary angiography performed using novel flat detector

Coronary angiography (CA) procedure uses various angiographic projections to elicit detailed info... more Coronary angiography (CA) procedure uses various angiographic projections to elicit detailed information of the coronary arteries with some steep projections involving high radiation dose to patients. This study intends to evaluate radiation doses and estimated risk from angiographic projections during CA procedure performed using novel flat detector (FD) system with improved image processing and noise reduction techniques. Real-time monitoring of radiation doses using kerma-area product (KAP) meter was performed for 140 patients using Philips Clarity FD system. The CA procedure involved seven standard projections, of which five were extensively selected by interventionalists. Mean fluoroscopic time (FT), KAP, and reference air kerma (Ka,r) for CA procedure were 3.24 min (0.5-10.51), 13.99 Gycm 2 (4.02-37.6), and 231.43 mGy (73.8-622.15), respectively. Effective dose calculated using Monte Carlo-based PCXMC software was found to be 4.9 mSv. Left anterior oblique (LAO) 45° projection contributed the highest radiation dose (28%) of the overall KAP. Radiation-induced risk was found to be higher in females compared to males with increased risk of lung cancer. An increase of 10%-15% in radiation dose was observed when one or more additional projections were adopted along with the seven standard projections. A 14% reduction of radiation dose was achieved from novel FD system when low-dose protocol during fluoroscopy and medium-dose protocol during cine acquisitions were adopted, compared to medium-dose protocol.

Research paper thumbnail of Radiation doses and estimated risk from angiographic projections during coronary angiography performed using novel flat detector

Journal of applied clinical medical physics / American College of Medical Physics, Jan 8, 2016

Coronary angiography (CA) procedure uses various angiographic projections to elicit detailed info... more Coronary angiography (CA) procedure uses various angiographic projections to elicit detailed information of the coronary arteries with some steep projections involving high radiation dose to patients. This study intends to evaluate radiation doses and estimated risk from angiographic projections during CA procedure performed using novel flat detector (FD) system with improved image processing and noise reduction techniques. Real-time monitoring of radiation doses using kerma-area product (KAP) meter was performed for 140 patients using Philips Clarity FD system. The CA procedure involved seven standard projections, of which five were extensively selected by interventionalists. Mean fluoroscopic time (FT), KAP, and reference air kerma (Ka,r) for CA procedure were 3.24 min (0.5-10.51), 13.99Gycm2 (4.02-37.6), and 231.43 mGy (73.8-622.15), respectively. Effective dose calculated using Monte Carlo-based PCXMC software was found to be 4.9mSv. Left anterior oblique (LAO) 45° projection co...

Research paper thumbnail of Transition from image intensifier to flat panel detector in interventional cardiology: Impact of radiation dose

Journal of Medical Physics, 2015

Flat panel detector (FPD) technology in interventional cardiology is on the increase due to its v... more Flat panel detector (FPD) technology in interventional cardiology is on the increase due to its varied advantages compared to the conventional image intensifier (II) systems. It is not clear whether FPD imparts lower radiation doses compared to II systems though a few studies support this finding. This study intends to compare radiation doses from II and FPD systems for coronaryangiography (CAG) and Percutaneous Transluminal Coronary Angioplasty (PTCA) performed in a tertiary referral center. Radiation doses were measured using dose area product (DAP) meter from patients who underwent CAG (n = 222) and PTCA (n = 75) performed using FPD angiography system. The DAP values from FPD were compared with earlier reported data using II systems from the same referral center where the study was conducted. The mean DAP values from FPD system for CAG and PTCA were 24.35 and 63.64 Gycm(2) and those from II system were 27.71 and 65.44 Gycm(2). Transition from II to FPD system requires stringent dose optimization strategies right from the initial period of installation.

Log In