Blanca Salazar - Academia.edu (original) (raw)
Related Authors
Pontifícia Universidade Católica de São Paulo
Uploads
Papers by Blanca Salazar
Brain Research, 2004
The effect of the negatively charged ganglioside GD1a, one of the major brain gangliosides [H. Be... more The effect of the negatively charged ganglioside GD1a, one of the major brain gangliosides [H. Beitinger, W. Probst, R. Hilbig, H. Rahmann, Seasonal variability of sialo-glycoconjugates in the brain of the Djungarian hamster (Phodopus sungorus). Comp. Biochem. Physiol., B 86 (1987) 377-384] on the function of brain derived BTX-modified voltage-dependent sodium channel was studied using the planar lipid bilayer system. Bilayers were formed either with a mixture of neutral phospholipids (4 phosphoethanolamine (PE):1 phosphocholine (PC)) alone or with one containing 6% of the disialoganglioside GD1a. The permeation and activation properties of the channels were measured in the presence of symmetrical 200 mM NaCl. We found that the single channel conductance was not affected by GD1a, whereas the steady-state activation curve displayed a hyperpolarizing shift in the presence of GD1a. Since the lipid distribution in these membranes is symmetrical, then the GD1a effect on sodium channels may result either from an induction of channel conformational changes or from an asymmetrical interaction between the channel (extracellular vs. intracellular channel aspect) and GD1a. Regardless of the mechanism, the data indicate that differences in ganglioside content in neuronal cells may contribute to the previously observed sodium channel functional variability within (soma, dentritic, axon hillock) and between neuronal cells as well as to excitability changes in those physiological and pathological conditions where changes in the neuronal ganglioside content occur.
Brain Research, 1995
Lidocaine effects were studied at the single channel level on batrachotoxin-activated eel electro... more Lidocaine effects were studied at the single channel level on batrachotoxin-activated eel electroplax (muscle-derived) and on rat brain sodium channels in planar lipid bilayers to investigate whether these effects were the same on structurally different sodium channels.
Journal of General Physiology, 1996
A B S T RA C T We have recently reported that brain sodium channels display periods with high (lo... more A B S T RA C T We have recently reported that brain sodium channels display periods with high (low-/Q) and low (high-/Q) levels of lidocaine-induced open channel block (Salazar, B.C., D.O. Flash, J.L. Walewski, and E. Recio-Pinto. 1995. Brain Res. 699:305-314). In the present study, we further characterize this phenomenon by studying the effects of the permanently charged lidocaine analogue, QX-314. We found that the detection of high-and low-/Q periods does not require the presence of the uncharged form of lidocaine. The level of block, for either period, at various QX-314 concentrations indicated the presence of a single local anesthetic binding site. Increasing the concentration of QX-314 decreased the lifetime of the high-/Q periods while it increased the lifetime of the low-/Q periods. These results could be best fitted to a model with two open channel conformations that display different local anesthetic Kd values (low and high/Q), and in which the channel area defining the local anesthetic/Q consists of multiple interacting regions. Amplitude distribution analysis showed that changes in the/Q values reflected changes in the kon rates, without changes in the kof f rates. Both lidocaine and QX-314 were found to be incapable of blocking small-channel subconductance states (5-6 pS). Changes in the local anesthetic kon rates for blocking the fully open state and the lack of local anesthetic block of the small subconductance state are consistent with the presence of channel conformational changes involving the intracellular permeation pathway leading to the local anesthetic binding site. Key words: lidocaine 9 QX-314 9 brain voltage-dependent sodium channels 9 open channel block
Brain Research, 2004
The effect of the negatively charged ganglioside GD1a, one of the major brain gangliosides [H. Be... more The effect of the negatively charged ganglioside GD1a, one of the major brain gangliosides [H. Beitinger, W. Probst, R. Hilbig, H. Rahmann, Seasonal variability of sialo-glycoconjugates in the brain of the Djungarian hamster (Phodopus sungorus). Comp. Biochem. Physiol., B 86 (1987) 377-384] on the function of brain derived BTX-modified voltage-dependent sodium channel was studied using the planar lipid bilayer system. Bilayers were formed either with a mixture of neutral phospholipids (4 phosphoethanolamine (PE):1 phosphocholine (PC)) alone or with one containing 6% of the disialoganglioside GD1a. The permeation and activation properties of the channels were measured in the presence of symmetrical 200 mM NaCl. We found that the single channel conductance was not affected by GD1a, whereas the steady-state activation curve displayed a hyperpolarizing shift in the presence of GD1a. Since the lipid distribution in these membranes is symmetrical, then the GD1a effect on sodium channels may result either from an induction of channel conformational changes or from an asymmetrical interaction between the channel (extracellular vs. intracellular channel aspect) and GD1a. Regardless of the mechanism, the data indicate that differences in ganglioside content in neuronal cells may contribute to the previously observed sodium channel functional variability within (soma, dentritic, axon hillock) and between neuronal cells as well as to excitability changes in those physiological and pathological conditions where changes in the neuronal ganglioside content occur.
Brain Research, 1995
Lidocaine effects were studied at the single channel level on batrachotoxin-activated eel electro... more Lidocaine effects were studied at the single channel level on batrachotoxin-activated eel electroplax (muscle-derived) and on rat brain sodium channels in planar lipid bilayers to investigate whether these effects were the same on structurally different sodium channels.
Journal of General Physiology, 1996
A B S T RA C T We have recently reported that brain sodium channels display periods with high (lo... more A B S T RA C T We have recently reported that brain sodium channels display periods with high (low-/Q) and low (high-/Q) levels of lidocaine-induced open channel block (Salazar, B.C., D.O. Flash, J.L. Walewski, and E. Recio-Pinto. 1995. Brain Res. 699:305-314). In the present study, we further characterize this phenomenon by studying the effects of the permanently charged lidocaine analogue, QX-314. We found that the detection of high-and low-/Q periods does not require the presence of the uncharged form of lidocaine. The level of block, for either period, at various QX-314 concentrations indicated the presence of a single local anesthetic binding site. Increasing the concentration of QX-314 decreased the lifetime of the high-/Q periods while it increased the lifetime of the low-/Q periods. These results could be best fitted to a model with two open channel conformations that display different local anesthetic Kd values (low and high/Q), and in which the channel area defining the local anesthetic/Q consists of multiple interacting regions. Amplitude distribution analysis showed that changes in the/Q values reflected changes in the kon rates, without changes in the kof f rates. Both lidocaine and QX-314 were found to be incapable of blocking small-channel subconductance states (5-6 pS). Changes in the local anesthetic kon rates for blocking the fully open state and the lack of local anesthetic block of the small subconductance state are consistent with the presence of channel conformational changes involving the intracellular permeation pathway leading to the local anesthetic binding site. Key words: lidocaine 9 QX-314 9 brain voltage-dependent sodium channels 9 open channel block