Buu Tu - Academia.edu (original) (raw)

Papers by Buu Tu

Research paper thumbnail of Human host factors required for influenza virus replication. Nature 463: 813–817

Influenza A virus is an RNA virus that encodes up to eleven proteins and this small coding capaci... more Influenza A virus is an RNA virus that encodes up to eleven proteins and this small coding capacity demands that the virus utilize the host cellular machinery for many aspects of its life cycle1. Knowledge of these host cell requirements not only informs us of the molecular pathways exploited by the virus but also provides additional targets that could be pursued for antiviral drug development. Here, we employ an integrative systems approach, based upon genome-wide RNAi screening, to identify 295 cellular cofactors required for early-Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:

Research paper thumbnail of Functional profiling of microtumors to identify cancer associated fibroblast-derived drug targets

Oncotarget, Jan 21, 2017

Recent advances in chemotherapeutics highlight the importance of molecularly-targeted perturbagen... more Recent advances in chemotherapeutics highlight the importance of molecularly-targeted perturbagens. Although these therapies typically address dysregulated cancer cell proteins, there are increasing therapeutic modalities that take into consideration cancer cell-extrinsic factors. Targeting components of tumor stroma such as vascular or immune cells has been shown to represent an efficacious approach in cancer treatment. Cancer-associated fibroblasts (CAFs) exemplify an important stromal component that can be exploited in targeted therapeutics, though their employment in drug discovery campaigns has been relatively minimal due to technical logistics in assaying for CAF-tumor interactions. Here we report a 3-dimensional multi-culture tumor:CAF spheroid phenotypic screening platform that can be applied to high-content drug discovery initiatives. Using a functional genomics approach we systematically profiled 1,024 candidate genes for CAF-intrinsic anti-spheroid activity; identifying s...

Research paper thumbnail of A genomic screen identifies TYR03 as a MITF regulator in melanoma

Proceedings of the National Academy of Sciences of the United States of America, 2009

Research paper thumbnail of Genome-Engineering Tools to Establish Accurate Reporter Cell Lines That Enable Identification of Therapeutic Strategies to Treat Friedreich's Ataxia

Journal of biomolecular screening, Jan 23, 2015

Friedreich's ataxia is a neurodegenerative disease caused by deficiency of the mitochondrial ... more Friedreich's ataxia is a neurodegenerative disease caused by deficiency of the mitochondrial protein frataxin. This deficiency results from expansion of a trinucleotide repeat in the first intron of the frataxin gene. Because this repeat expansion resides in an intron and hence does not alter the amino acid sequence of the frataxin protein, gene reactivation could be of therapeutic benefit. High-throughput screening for frataxin activators has so far met with limited success because current cellular models may not accurately assess endogenous frataxin gene regulation. Here we report the design and validation of genome-engineering tools that enable the generation of human cell lines that express the frataxin gene fused to a luciferase reporter gene from its endogenous locus. Performing a pilot high-throughput genomic screen in a newly established reporter cell line, we uncovered novel negative regulators of frataxin expression. Rational design of small-molecule inhibitors of the ...

Research paper thumbnail of Novel Method for the Quantitative Assessment of Cell Migration: A Study on the Motility of Rabbit Anterior Cruciate (ACL) and Medial Collateral Ligament (MCL) Cells

Tissue Engineering, 2000

A novel method of quantitating cell migration has been proposed for the potential utilization of ... more A novel method of quantitating cell migration has been proposed for the potential utilization of tissue engineered scaffolds. Applying Alt's conservation law to describe the motion of first passage ACL and MCL cells, we have developed a quantitative method to assess innate differences in the motility of cells from these two ligamentous tissues. In this study, first passage ACL and MCL cells were cultured from four mature New Zealand white rabbits. One side of the cell monolayer was scraped completely away to create a wound model. The cell moved into the cell-free area, and cell density profiles were analyzed at 6 h and 12 h. Values of the random motility coefficient (mu) were then estimated by curve fitting the 6 h and 12 h data to a mathematical model, derived from the conservation law of cell flux. During 6 h of incubation in medium supplemented with 1% FBS, MCL cells (mu(MCL) = 4.63 +/- 0.65 X 10(-6) mm(2)/sec) were significantly (p < 0.05) more mobile than ACL cells (mu(ACL) = 2.51 +/- 0.31 X 10(-6) mm(2)/sec). At 12 h, the MCL cells also appeared to move faster (mu(ACL) = 4.39 +/- 0.63 X 10(-6) mm(2)/sec, mu(MCL) = 6.59 +/- 1.47 X 10(-6) mm(2)/sec), but the difference was not statistically significant (p = 0.18). Exposure of the cells to growth factors PDGF-BB or bFGF for 6 h had no significant effect on the migration of the ACL and MCL cells. However, exposure of the ACL cells (p < 0.05) and the MCL cells (p = 0.19) to 1 ng/mL of PDGFBB for 12 h enhanced their migration. Incubation with a high concentration (100 ng/mL) of PDGF-BB or bFGF at concentrations tested (1 or 100 ng/mL) for 12 h, produced little or no migratory stimulation on these ligament cells. Our findings support the previous qualitative observations made by numerous investigators. The novel methodology developed in this study may provide a basis for tissue engineering, and the results may be applied to tissue reconstruction techniques of the knee ligaments.

Research paper thumbnail of A genomic screen identifies TYRO3 as a MITF regulator in melanoma

Proceedings of the National Academy of Sciences, 2009

Malignant melanoma is the most aggressive form of cutaneous carcinoma, accounting for 75% of all ... more Malignant melanoma is the most aggressive form of cutaneous carcinoma, accounting for 75% of all deaths caused by skin cancers. Microphthalmia-associated transcription factor (MITF) is a master gene regulating melanocyte development and functions as a “lineage addiction” oncogene in malignant melanoma. We have identified the receptor protein tyrosine kinase TYRO3 as an upstream regulator of MITF expression by a genome-wide gain-of-function cDNA screen and show that TYRO3 induces MITF-M expression in a SOX10-dependent manner in melanoma cells. Expression of TYRO3 is significantly elevated in human primary melanoma tissue samples and melanoma cell lines and correlates with MITF-M mRNA levels. TYRO3 overexpression bypasses BRAF(V600E)-induced senescence in primary melanocytes, inducing transformation of non-tumorigenic cell lines. Furthermore, TYRO3 knockdown represses cellular proliferation and colony formation in melanoma cells, and sensitizes them to chemotherapeutic agent-induced a...

Research paper thumbnail of Identification of Small Molecule and Genetic Modulators of AON-Induced Dystrophin Exon Skipping by High-Throughput Screening

PLoS ONE, 2009

One therapeutic approach to Duchenne Muscular Dystrophy (DMD) recently entering clinical trials a... more One therapeutic approach to Duchenne Muscular Dystrophy (DMD) recently entering clinical trials aims to convert DMD phenotypes to that of a milder disease variant, Becker Muscular Dystrophy (BMD), by employing antisense oligonucleotides (AONs) targeting splice sites, to induce exon skipping and restore partial dystrophin function. In order to search for small molecule and genetic modulators of AON-dependent and independent exon skipping, we screened ,10,000 known small molecule drugs, .17,000 cDNA clones, and .2,000 kinase-targeted siRNAs against a 5.6 kb luciferase minigene construct, encompassing exon 71 to exon 73 of human dystrophin. As a result, we identified several enhancers of exon skipping, acting on both the reporter construct as well as endogenous dystrophin in mdx cells. Multiple mechanisms of action were identified, including histone deacetylase inhibition, tubulin modulation and pre-mRNA processing. Among others, the nucleolar protein NOL8 and staufen RNA binding protein homolog 2 (Stau2) were found to induce endogenous exon skipping in mdx cells in an AON-dependent fashion. An unexpected but recurrent theme observed in our screening efforts was the apparent link between the inhibition of cell cycle progression and the induction of exon skipping.

Research paper thumbnail of A probability-based approach for the analysis of large-scale RNAi screens

Nature Methods, 2007

We describe a statistical analysis methodology designed to minimize the impact of off-target acti... more We describe a statistical analysis methodology designed to minimize the impact of off-target activities upon large-scale RNA interference (RNAi) screens in mammalian cells. Application of this approach enhances reconfirmation rates and facilitates the experimental validation of new gene activities through the probability-based identification of multiple distinct and active small interfering RNAs (siRNAs) targeting the same gene. We further extend this approach to establish that the optimal redundancy for efficacious RNAi collections is between 4-6 siRNAs per gene.

Research paper thumbnail of Human host factors required for influenza virus replication

Research paper thumbnail of Integration of Reagent Databases with Compound Weighing, Formatting, and Pipetting Instruments

Journal of the Association for Laboratory Automation, 2003

Research paper thumbnail of Mechanisms of chondrocyte adhesion to cartilage: role of β1-integrins, CD44, and annexin V

Journal of Orthopaedic Research, 2001

The initial adhesion of transplanted chondrocytes to surrounding host cartilage may be important ... more The initial adhesion of transplanted chondrocytes to surrounding host cartilage may be important in the repair of articular defects. Adhesion may position cells to secrete molecules that fill the defect and integrate repair tissue with host tissue. While chondrocytes are known to become increasingly adherent to cartilage with time, the molecular basis for this is unknown. The objective of this study was to investigate the role of beta1-integrin, CD44, and annexin V receptors in chondrocyte adhesion to cartilage. Chondrocytes were cultured in high density monolayer, released with trypsin, and allowed to recover in suspension for 2 h at 37 degrees C. Under these conditions, flow cytometry analysis showed that chondrocytes expressed beta1-integrins, CD44, and annexin V. In a rapid screening assay to assess chondrocyte adhesion to cartilage, cell detachment decreased from 79% at 10 min following transplantation to 10% at 320 min. Treatment of cells with a monoclonal antibody to block beta1-integrins significantly increased chondrocyte detachment from cartilage compared to untreated controls. Similarly, results from a parallel-plate shear flow adhesion assay showed that blocking beta1-integrins significantly increased chondrocyte detachment from cartilage compared to untreated controls at each level of applied shear (0-70 Pa). In both assays, treatment of cells with reagents that block CD44 (hyaluronan oligosaccharides or monoclonal Ab IM7) or annexin V (polyclonal Ab #8958) had no detectable effect on adhesion. With cartilage treated with chondroitinase ABC, blocking beta1-integrins also increased chondrocyte detachment, while blocking CD44 and annexin V also had no detectable effect. Under the conditions studied here, beta1-integrins appear to mediate chondrocyte adhesion to a cut cartilage surface. Delineation of the mechanisms of adhesion may have clinical implications by allowing cell manipulations or matrix treatments to enhance chondrocyte adhesion and retention at a defect site.

Research paper thumbnail of SWELL1, a Plasma Membrane Protein, Is an Essential Component of Volume-Regulated Anion Channel

Research paper thumbnail of Global Analysis of Host-Pathogen Interactions that Regulate Early-Stage HIV-1 Replication

Cell, 2008

Human Immunodeficiency Viruses (HIV-1 and HIV-2) rely upon host-encoded proteins to facilitate th... more Human Immunodeficiency Viruses (HIV-1 and HIV-2) rely upon host-encoded proteins to facilitate their replication. Here, we combined genome-wide siRNA analyses with interrogation of human interactome databases to assemble a host-pathogen biochemical network containing 213 confirmed host cellular factors and 11 HIV-1-encoded proteins. Protein complexes that regulate ubiquitin conjugation, proteolysis, DNA-damage response, and RNA splicing were identified as important modulators of earlystage HIV-1 infection. Additionally, over 40 new factors were shown to specifically influence the initiation and/or kinetics of HIV-1 DNA synthesis, including cytoskeletal regulatory proteins, modulators of posttranslational modification, and nucleic acid-binding proteins. Finally, 15 proteins with diverse functional roles, including nuclear transport, prostaglandin synthesis, ubiquitination, and transcription, were found to influence nuclear import or viral DNA integration. Taken together, the multiscale approach described here has uncovered multiprotein virus-host interactions that likely act in concert to facilitate the early steps of HIV-1 infection.

Research paper thumbnail of High‐Content Screening of Functional Genomic Libraries

Methods in Enzymology, 2006

Recent advances in functional genomics have enabled genome-wide genetic studies in mammalian cell... more Recent advances in functional genomics have enabled genome-wide genetic studies in mammalian cells. These include the establishment of high-throughput transfection and viral propagation methodologies, the production of large-scale cDNA and siRNA libraries, and the development of sensitive assay detection processes and instrumentation. The latter has been significantly facilitated by the implementation of automated microscopy and quantitative image analysis, collectively referred to as high-content screening (HCS), toward cell-based functional genomics application. This technology can be applied to whole genome analysis of discrete molecular and phenotypic events at the level of individual cells and promises to significantly expand the scope of functional genomic analyses in mammalian cells. This chapter provides a comprehensive guide for curating and preparing function genomics libraries and performing HCS at the level of the genome.

Research paper thumbnail of Human host factors required for influenza virus replication. Nature 463: 813–817

Influenza A virus is an RNA virus that encodes up to eleven proteins and this small coding capaci... more Influenza A virus is an RNA virus that encodes up to eleven proteins and this small coding capacity demands that the virus utilize the host cellular machinery for many aspects of its life cycle1. Knowledge of these host cell requirements not only informs us of the molecular pathways exploited by the virus but also provides additional targets that could be pursued for antiviral drug development. Here, we employ an integrative systems approach, based upon genome-wide RNAi screening, to identify 295 cellular cofactors required for early-Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:

Research paper thumbnail of Functional profiling of microtumors to identify cancer associated fibroblast-derived drug targets

Oncotarget, Jan 21, 2017

Recent advances in chemotherapeutics highlight the importance of molecularly-targeted perturbagen... more Recent advances in chemotherapeutics highlight the importance of molecularly-targeted perturbagens. Although these therapies typically address dysregulated cancer cell proteins, there are increasing therapeutic modalities that take into consideration cancer cell-extrinsic factors. Targeting components of tumor stroma such as vascular or immune cells has been shown to represent an efficacious approach in cancer treatment. Cancer-associated fibroblasts (CAFs) exemplify an important stromal component that can be exploited in targeted therapeutics, though their employment in drug discovery campaigns has been relatively minimal due to technical logistics in assaying for CAF-tumor interactions. Here we report a 3-dimensional multi-culture tumor:CAF spheroid phenotypic screening platform that can be applied to high-content drug discovery initiatives. Using a functional genomics approach we systematically profiled 1,024 candidate genes for CAF-intrinsic anti-spheroid activity; identifying s...

Research paper thumbnail of A genomic screen identifies TYR03 as a MITF regulator in melanoma

Proceedings of the National Academy of Sciences of the United States of America, 2009

Research paper thumbnail of Genome-Engineering Tools to Establish Accurate Reporter Cell Lines That Enable Identification of Therapeutic Strategies to Treat Friedreich's Ataxia

Journal of biomolecular screening, Jan 23, 2015

Friedreich's ataxia is a neurodegenerative disease caused by deficiency of the mitochondrial ... more Friedreich's ataxia is a neurodegenerative disease caused by deficiency of the mitochondrial protein frataxin. This deficiency results from expansion of a trinucleotide repeat in the first intron of the frataxin gene. Because this repeat expansion resides in an intron and hence does not alter the amino acid sequence of the frataxin protein, gene reactivation could be of therapeutic benefit. High-throughput screening for frataxin activators has so far met with limited success because current cellular models may not accurately assess endogenous frataxin gene regulation. Here we report the design and validation of genome-engineering tools that enable the generation of human cell lines that express the frataxin gene fused to a luciferase reporter gene from its endogenous locus. Performing a pilot high-throughput genomic screen in a newly established reporter cell line, we uncovered novel negative regulators of frataxin expression. Rational design of small-molecule inhibitors of the ...

Research paper thumbnail of Novel Method for the Quantitative Assessment of Cell Migration: A Study on the Motility of Rabbit Anterior Cruciate (ACL) and Medial Collateral Ligament (MCL) Cells

Tissue Engineering, 2000

A novel method of quantitating cell migration has been proposed for the potential utilization of ... more A novel method of quantitating cell migration has been proposed for the potential utilization of tissue engineered scaffolds. Applying Alt's conservation law to describe the motion of first passage ACL and MCL cells, we have developed a quantitative method to assess innate differences in the motility of cells from these two ligamentous tissues. In this study, first passage ACL and MCL cells were cultured from four mature New Zealand white rabbits. One side of the cell monolayer was scraped completely away to create a wound model. The cell moved into the cell-free area, and cell density profiles were analyzed at 6 h and 12 h. Values of the random motility coefficient (mu) were then estimated by curve fitting the 6 h and 12 h data to a mathematical model, derived from the conservation law of cell flux. During 6 h of incubation in medium supplemented with 1% FBS, MCL cells (mu(MCL) = 4.63 +/- 0.65 X 10(-6) mm(2)/sec) were significantly (p < 0.05) more mobile than ACL cells (mu(ACL) = 2.51 +/- 0.31 X 10(-6) mm(2)/sec). At 12 h, the MCL cells also appeared to move faster (mu(ACL) = 4.39 +/- 0.63 X 10(-6) mm(2)/sec, mu(MCL) = 6.59 +/- 1.47 X 10(-6) mm(2)/sec), but the difference was not statistically significant (p = 0.18). Exposure of the cells to growth factors PDGF-BB or bFGF for 6 h had no significant effect on the migration of the ACL and MCL cells. However, exposure of the ACL cells (p < 0.05) and the MCL cells (p = 0.19) to 1 ng/mL of PDGFBB for 12 h enhanced their migration. Incubation with a high concentration (100 ng/mL) of PDGF-BB or bFGF at concentrations tested (1 or 100 ng/mL) for 12 h, produced little or no migratory stimulation on these ligament cells. Our findings support the previous qualitative observations made by numerous investigators. The novel methodology developed in this study may provide a basis for tissue engineering, and the results may be applied to tissue reconstruction techniques of the knee ligaments.

Research paper thumbnail of A genomic screen identifies TYRO3 as a MITF regulator in melanoma

Proceedings of the National Academy of Sciences, 2009

Malignant melanoma is the most aggressive form of cutaneous carcinoma, accounting for 75% of all ... more Malignant melanoma is the most aggressive form of cutaneous carcinoma, accounting for 75% of all deaths caused by skin cancers. Microphthalmia-associated transcription factor (MITF) is a master gene regulating melanocyte development and functions as a “lineage addiction” oncogene in malignant melanoma. We have identified the receptor protein tyrosine kinase TYRO3 as an upstream regulator of MITF expression by a genome-wide gain-of-function cDNA screen and show that TYRO3 induces MITF-M expression in a SOX10-dependent manner in melanoma cells. Expression of TYRO3 is significantly elevated in human primary melanoma tissue samples and melanoma cell lines and correlates with MITF-M mRNA levels. TYRO3 overexpression bypasses BRAF(V600E)-induced senescence in primary melanocytes, inducing transformation of non-tumorigenic cell lines. Furthermore, TYRO3 knockdown represses cellular proliferation and colony formation in melanoma cells, and sensitizes them to chemotherapeutic agent-induced a...

Research paper thumbnail of Identification of Small Molecule and Genetic Modulators of AON-Induced Dystrophin Exon Skipping by High-Throughput Screening

PLoS ONE, 2009

One therapeutic approach to Duchenne Muscular Dystrophy (DMD) recently entering clinical trials a... more One therapeutic approach to Duchenne Muscular Dystrophy (DMD) recently entering clinical trials aims to convert DMD phenotypes to that of a milder disease variant, Becker Muscular Dystrophy (BMD), by employing antisense oligonucleotides (AONs) targeting splice sites, to induce exon skipping and restore partial dystrophin function. In order to search for small molecule and genetic modulators of AON-dependent and independent exon skipping, we screened ,10,000 known small molecule drugs, .17,000 cDNA clones, and .2,000 kinase-targeted siRNAs against a 5.6 kb luciferase minigene construct, encompassing exon 71 to exon 73 of human dystrophin. As a result, we identified several enhancers of exon skipping, acting on both the reporter construct as well as endogenous dystrophin in mdx cells. Multiple mechanisms of action were identified, including histone deacetylase inhibition, tubulin modulation and pre-mRNA processing. Among others, the nucleolar protein NOL8 and staufen RNA binding protein homolog 2 (Stau2) were found to induce endogenous exon skipping in mdx cells in an AON-dependent fashion. An unexpected but recurrent theme observed in our screening efforts was the apparent link between the inhibition of cell cycle progression and the induction of exon skipping.

Research paper thumbnail of A probability-based approach for the analysis of large-scale RNAi screens

Nature Methods, 2007

We describe a statistical analysis methodology designed to minimize the impact of off-target acti... more We describe a statistical analysis methodology designed to minimize the impact of off-target activities upon large-scale RNA interference (RNAi) screens in mammalian cells. Application of this approach enhances reconfirmation rates and facilitates the experimental validation of new gene activities through the probability-based identification of multiple distinct and active small interfering RNAs (siRNAs) targeting the same gene. We further extend this approach to establish that the optimal redundancy for efficacious RNAi collections is between 4-6 siRNAs per gene.

Research paper thumbnail of Human host factors required for influenza virus replication

Research paper thumbnail of Integration of Reagent Databases with Compound Weighing, Formatting, and Pipetting Instruments

Journal of the Association for Laboratory Automation, 2003

Research paper thumbnail of Mechanisms of chondrocyte adhesion to cartilage: role of β1-integrins, CD44, and annexin V

Journal of Orthopaedic Research, 2001

The initial adhesion of transplanted chondrocytes to surrounding host cartilage may be important ... more The initial adhesion of transplanted chondrocytes to surrounding host cartilage may be important in the repair of articular defects. Adhesion may position cells to secrete molecules that fill the defect and integrate repair tissue with host tissue. While chondrocytes are known to become increasingly adherent to cartilage with time, the molecular basis for this is unknown. The objective of this study was to investigate the role of beta1-integrin, CD44, and annexin V receptors in chondrocyte adhesion to cartilage. Chondrocytes were cultured in high density monolayer, released with trypsin, and allowed to recover in suspension for 2 h at 37 degrees C. Under these conditions, flow cytometry analysis showed that chondrocytes expressed beta1-integrins, CD44, and annexin V. In a rapid screening assay to assess chondrocyte adhesion to cartilage, cell detachment decreased from 79% at 10 min following transplantation to 10% at 320 min. Treatment of cells with a monoclonal antibody to block beta1-integrins significantly increased chondrocyte detachment from cartilage compared to untreated controls. Similarly, results from a parallel-plate shear flow adhesion assay showed that blocking beta1-integrins significantly increased chondrocyte detachment from cartilage compared to untreated controls at each level of applied shear (0-70 Pa). In both assays, treatment of cells with reagents that block CD44 (hyaluronan oligosaccharides or monoclonal Ab IM7) or annexin V (polyclonal Ab #8958) had no detectable effect on adhesion. With cartilage treated with chondroitinase ABC, blocking beta1-integrins also increased chondrocyte detachment, while blocking CD44 and annexin V also had no detectable effect. Under the conditions studied here, beta1-integrins appear to mediate chondrocyte adhesion to a cut cartilage surface. Delineation of the mechanisms of adhesion may have clinical implications by allowing cell manipulations or matrix treatments to enhance chondrocyte adhesion and retention at a defect site.

Research paper thumbnail of SWELL1, a Plasma Membrane Protein, Is an Essential Component of Volume-Regulated Anion Channel

Research paper thumbnail of Global Analysis of Host-Pathogen Interactions that Regulate Early-Stage HIV-1 Replication

Cell, 2008

Human Immunodeficiency Viruses (HIV-1 and HIV-2) rely upon host-encoded proteins to facilitate th... more Human Immunodeficiency Viruses (HIV-1 and HIV-2) rely upon host-encoded proteins to facilitate their replication. Here, we combined genome-wide siRNA analyses with interrogation of human interactome databases to assemble a host-pathogen biochemical network containing 213 confirmed host cellular factors and 11 HIV-1-encoded proteins. Protein complexes that regulate ubiquitin conjugation, proteolysis, DNA-damage response, and RNA splicing were identified as important modulators of earlystage HIV-1 infection. Additionally, over 40 new factors were shown to specifically influence the initiation and/or kinetics of HIV-1 DNA synthesis, including cytoskeletal regulatory proteins, modulators of posttranslational modification, and nucleic acid-binding proteins. Finally, 15 proteins with diverse functional roles, including nuclear transport, prostaglandin synthesis, ubiquitination, and transcription, were found to influence nuclear import or viral DNA integration. Taken together, the multiscale approach described here has uncovered multiprotein virus-host interactions that likely act in concert to facilitate the early steps of HIV-1 infection.

Research paper thumbnail of High‐Content Screening of Functional Genomic Libraries

Methods in Enzymology, 2006

Recent advances in functional genomics have enabled genome-wide genetic studies in mammalian cell... more Recent advances in functional genomics have enabled genome-wide genetic studies in mammalian cells. These include the establishment of high-throughput transfection and viral propagation methodologies, the production of large-scale cDNA and siRNA libraries, and the development of sensitive assay detection processes and instrumentation. The latter has been significantly facilitated by the implementation of automated microscopy and quantitative image analysis, collectively referred to as high-content screening (HCS), toward cell-based functional genomics application. This technology can be applied to whole genome analysis of discrete molecular and phenotypic events at the level of individual cells and promises to significantly expand the scope of functional genomic analyses in mammalian cells. This chapter provides a comprehensive guide for curating and preparing function genomics libraries and performing HCS at the level of the genome.