Chiara Dianzani - Academia.edu (original) (raw)

Papers by Chiara Dianzani

Research paper thumbnail of Alendronate-Grafted Nanoemulsions for Bone-Targeted Vincristine Delivery: Preliminary Studies on Cell and Animal Models

Biomolecules, Feb 18, 2024

Bone is a site of distant metastases, which are a common cause of morbidity and mortality with a ... more Bone is a site of distant metastases, which are a common cause of morbidity and mortality with a high socio-economic impact, for many malignant tumours. In order to engineer pharmacological therapies that are suitable for this debilitating disease, this experimental work presents injectable lipid nanoemulsions, which are endowed with a long history of safe clinical usage in parenteral nutrition, their loading with vincristine and their grafting with alendronate, with a dual purpose: merging the anticancer activity of bisphosphonates and vincristine, and enhancing bone-targeted delivery. In cell studies, alendronate synergised with the anti-migration activity of vincristine, which is important as migration plays a key role in the metastatisation process. In preliminary animal studies, carried out thanks to IVIS technology, alendronate conjugation enhanced the bone targeting of fluorescently labelled nanoemulsions. These encouraging results will drive further studies on suitable animal models of the disease.

Research paper thumbnail of Development and Characterization of Solid Lipid Nanoparticles Loaded with a Highly Active Doxorubicin Derivative

Nanomaterials, Feb 16, 2018

Solid lipid nanoparticles (SLNs) comprise a versatile drug delivery system that has been develope... more Solid lipid nanoparticles (SLNs) comprise a versatile drug delivery system that has been developed for the treatment of a variety of diseases. The present study will investigate the feasibility of entrapping an active doxorubicin prodrug (a squalenoyl-derivative) in SLNs. The doxorubicin derivative-loaded SLNs are spherically shaped, have a mean diameter of 300-400 nm and show 85% w/w drug entrapment efficiency. The effects on cell growth of loaded SLNs, free doxorubicin and the prodrug have been examined using cytotoxicity and colony-forming assays in both human ovarian cancer line A2780 wild-type and doxorubicin-resistant cells. Further assessments as to the treatment's ability to induce cell death by apoptosis have been carried out by analyzing annexin-V staining and the activation of caspase-3. The in vitro data demonstrate that the delivery of the squalenoyl-doxorubicin derivative by SLNs increases its cytotoxic activity, as well as its apoptosis effect. This effect was particularly evident in doxorubicin-resistant cells.

Research paper thumbnail of Alendronate-Grafted Nanoemulsions for Bone-Targeted Vincristine Delivery: Preliminary Studies on Cell and Animal Models

Biomolecules, Feb 18, 2024

Bone is a site of distant metastases, which are a common cause of morbidity and mortality with a ... more Bone is a site of distant metastases, which are a common cause of morbidity and mortality with a high socio-economic impact, for many malignant tumours. In order to engineer pharmacological therapies that are suitable for this debilitating disease, this experimental work presents injectable lipid nanoemulsions, which are endowed with a long history of safe clinical usage in parenteral nutrition, their loading with vincristine and their grafting with alendronate, with a dual purpose: merging the anticancer activity of bisphosphonates and vincristine, and enhancing bone-targeted delivery. In cell studies, alendronate synergised with the anti-migration activity of vincristine, which is important as migration plays a key role in the metastatisation process. In preliminary animal studies, carried out thanks to IVIS technology, alendronate conjugation enhanced the bone targeting of fluorescently labelled nanoemulsions. These encouraging results will drive further studies on suitable animal models of the disease.

Research paper thumbnail of Development and Characterization of Solid Lipid Nanoparticles Loaded with a Highly Active Doxorubicin Derivative

Nanomaterials, Feb 16, 2018

Solid lipid nanoparticles (SLNs) comprise a versatile drug delivery system that has been develope... more Solid lipid nanoparticles (SLNs) comprise a versatile drug delivery system that has been developed for the treatment of a variety of diseases. The present study will investigate the feasibility of entrapping an active doxorubicin prodrug (a squalenoyl-derivative) in SLNs. The doxorubicin derivative-loaded SLNs are spherically shaped, have a mean diameter of 300-400 nm and show 85% w/w drug entrapment efficiency. The effects on cell growth of loaded SLNs, free doxorubicin and the prodrug have been examined using cytotoxicity and colony-forming assays in both human ovarian cancer line A2780 wild-type and doxorubicin-resistant cells. Further assessments as to the treatment's ability to induce cell death by apoptosis have been carried out by analyzing annexin-V staining and the activation of caspase-3. The in vitro data demonstrate that the delivery of the squalenoyl-doxorubicin derivative by SLNs increases its cytotoxic activity, as well as its apoptosis effect. This effect was particularly evident in doxorubicin-resistant cells.

Research paper thumbnail of Crosstalk between Nrf2 and YAP contributes to maintaining the antioxidant potential and chemoresistance in bladder cancer

Free Radical Biology and Medicine, Feb 1, 2018

Redox adaptation plays an important role in cancer cells drug resistance. The antioxidant respons... more Redox adaptation plays an important role in cancer cells drug resistance. The antioxidant response is principally mediated by the transcription factor Nrf2, that induces the transcriptional activation of several genes involved in GSH synthesis, chemoresistance, and cytoprotection. YAP is emerging as a key mediator of chemoresistance in a variety of cancers, but its role in controlling the antioxidant status of the cells is yet elusive. Here, we show that impairing YAP protein expression reduced GSH content and Nrf2 protein and mRNA expression in bladder cancer cells. Moreover, in YAP-knockdown cells the expression of FOXM1, a transcription factor involved in Nrf2 transcription, was down-regulated and the silencing of FOXM1 reduced Nrf2 expression. On the other hand, the silencing of Nrf2, as well as the depletion of GSH by BSO treatment, inhibited YAP expression, suggesting that cross-talk exists between YAP and Nrf2 proteins. Importantly, we found that silencing either YAP or Nrf2 enhanced sensitivity of bladder cancer cells to cytotoxic agents and reduced their migration. Furthermore, the inhibition of both YAP and Nrf2 expressions significantly increased cytotoxic drug sensitivity and synergistically reduced the migration of chemoresistant bladder cancer cells. These findings provide a rationale for targeting these transcriptional regulators in patients with chemoresistant bladder cancer, expressing high YAP and bearing a proficient antioxidant system.

Research paper thumbnail of Crosstalk between Nrf2 and YAP contributes to maintaining the antioxidant potential and chemoresistance in bladder cancer

Free Radical Biology and Medicine, Feb 1, 2018

Redox adaptation plays an important role in cancer cells drug resistance. The antioxidant respons... more Redox adaptation plays an important role in cancer cells drug resistance. The antioxidant response is principally mediated by the transcription factor Nrf2, that induces the transcriptional activation of several genes involved in GSH synthesis, chemoresistance, and cytoprotection. YAP is emerging as a key mediator of chemoresistance in a variety of cancers, but its role in controlling the antioxidant status of the cells is yet elusive. Here, we show that impairing YAP protein expression reduced GSH content and Nrf2 protein and mRNA expression in bladder cancer cells. Moreover, in YAP-knockdown cells the expression of FOXM1, a transcription factor involved in Nrf2 transcription, was down-regulated and the silencing of FOXM1 reduced Nrf2 expression. On the other hand, the silencing of Nrf2, as well as the depletion of GSH by BSO treatment, inhibited YAP expression, suggesting that cross-talk exists between YAP and Nrf2 proteins. Importantly, we found that silencing either YAP or Nrf2 enhanced sensitivity of bladder cancer cells to cytotoxic agents and reduced their migration. Furthermore, the inhibition of both YAP and Nrf2 expressions significantly increased cytotoxic drug sensitivity and synergistically reduced the migration of chemoresistant bladder cancer cells. These findings provide a rationale for targeting these transcriptional regulators in patients with chemoresistant bladder cancer, expressing high YAP and bearing a proficient antioxidant system.

Research paper thumbnail of Post-translational inhibition of YAP oncogene expression by 4-hydroxynonenal in bladder cancer cells

Free Radical Biology and Medicine, Sep 1, 2019

The transcriptional regulator YAP plays an important role in cancer progression and is negatively... more The transcriptional regulator YAP plays an important role in cancer progression and is negatively controlled by the Hippo pathway. YAP is frequently overexpressed in human cancers, including bladder cancer. Interestingly, YAP expression and activity can be inhibited by pro-oxidant conditions; moreover, YAP itself can also affect the cellular redox status through multiple mechanisms. 4-Hydroxynonenal (HNE), the most intensively studied end product of lipid peroxidation, is a pro-oxidant agent able to deplete GSH and has an anti-tumoral effect by affecting multiple signal pathways, including the down-regulation of oncogene expressions. These observations prompted us to investigate the effect of HNE on YAP expression and activity. We demonstrated that HNE inhibited YAP expression and its target genes in bladder cancer cells through a redox-dependent mechanism. Moreover, the YAP down-regulation was accompanied by an inhibition of proliferation, migration, invasion, and angiogenesis, as well as by an accumulation of cells in the G2/M phase of cell cycle and by an induction of apoptosis. We also established the YAP role in inhibiting cell viability and inducing apoptosis in HNE-treated cells by using an expression vector for YAP. Furthermore, we identified a post-translational mechanism for the HNEinduced YAP expression inhibition, involving an increase of YAP phosphorylation and ubiquitination, leading to proteasomal degradation. Our data established that HNE can posttranslationally down-regulate YAP through a redox-dependent mechanism and that this modulation can contribute to determining the specific anti-cancer effects of HNE.

Research paper thumbnail of Post-translational inhibition of YAP oncogene expression by 4-hydroxynonenal in bladder cancer cells

Free Radical Biology and Medicine, Sep 1, 2019

The transcriptional regulator YAP plays an important role in cancer progression and is negatively... more The transcriptional regulator YAP plays an important role in cancer progression and is negatively controlled by the Hippo pathway. YAP is frequently overexpressed in human cancers, including bladder cancer. Interestingly, YAP expression and activity can be inhibited by pro-oxidant conditions; moreover, YAP itself can also affect the cellular redox status through multiple mechanisms. 4-Hydroxynonenal (HNE), the most intensively studied end product of lipid peroxidation, is a pro-oxidant agent able to deplete GSH and has an anti-tumoral effect by affecting multiple signal pathways, including the down-regulation of oncogene expressions. These observations prompted us to investigate the effect of HNE on YAP expression and activity. We demonstrated that HNE inhibited YAP expression and its target genes in bladder cancer cells through a redox-dependent mechanism. Moreover, the YAP down-regulation was accompanied by an inhibition of proliferation, migration, invasion, and angiogenesis, as well as by an accumulation of cells in the G2/M phase of cell cycle and by an induction of apoptosis. We also established the YAP role in inhibiting cell viability and inducing apoptosis in HNE-treated cells by using an expression vector for YAP. Furthermore, we identified a post-translational mechanism for the HNEinduced YAP expression inhibition, involving an increase of YAP phosphorylation and ubiquitination, leading to proteasomal degradation. Our data established that HNE can posttranslationally down-regulate YAP through a redox-dependent mechanism and that this modulation can contribute to determining the specific anti-cancer effects of HNE.

Research paper thumbnail of Cholesteryl butyrate solid lipid nanoparticles inhibit adhesion of human neutrophils to endothelial cells

British Journal of Pharmacology, Jul 1, 2006

Adhesion of polymorphonuclear cells (PMNs) to vascular endothelial cells (EC) is a critical step ... more Adhesion of polymorphonuclear cells (PMNs) to vascular endothelial cells (EC) is a critical step in recruitment and infiltration of leukocytes into tissues during inflammation. High doses of butyric acid have been shown to ameliorate inflammation in inflammatory bowel diseases (IBD). Cholesteryl-butyrate solid lipid nanoparticles (chol-but SLN) as prodrug are a possible delivery system for butyric acid. 2 Sodium butyrate or chol-but SLN were coincubated with human PMNs and human umbilical vein EC (HUVEC); adhesion was quantified by computerized microimaging fluorescence analysis. Both chol-but SLN and sodium butyrate displayed antiadhesive effects on FMLP-and IL-1b-stimulated cells in a concentration-response curve (10 À8 -10 À5 M), but chol-but SLN were in all cases more active. Moreover, chol-but SLN inhibited FMLP-induced adhesion of PMNs to FCS-coated plastic wells, thus showing a direct effect on PMNs, while sodium butyrate had little effect. Confocal microscopy showed that fluorescent SLN entered PMNs and HUVEC after 10 min incubation. Chol-but SLN acted either on activated PMN or HUVEC. 3 Chol-but SLN inhibited O 2 À Á production and myeloperoxidase release by PMNs evoked by FMLP, in a dose-dependent, but not time-dependent, manner and were more active than sodium butyrate. 4 In conclusion, in all tests chol-but SLN were more active than sodium butyrate. Thus, chol-but SLN might be a valid alternative to sodium butyrate in the anti-inflammatory therapy of ulcerative colitis, avoiding complications related to the administration of sodium butyrate.

Research paper thumbnail of Cholesteryl butyrate solid lipid nanoparticles inhibit adhesion of human neutrophils to endothelial cells

British Journal of Pharmacology, Jul 1, 2006

Adhesion of polymorphonuclear cells (PMNs) to vascular endothelial cells (EC) is a critical step ... more Adhesion of polymorphonuclear cells (PMNs) to vascular endothelial cells (EC) is a critical step in recruitment and infiltration of leukocytes into tissues during inflammation. High doses of butyric acid have been shown to ameliorate inflammation in inflammatory bowel diseases (IBD). Cholesteryl-butyrate solid lipid nanoparticles (chol-but SLN) as prodrug are a possible delivery system for butyric acid. 2 Sodium butyrate or chol-but SLN were coincubated with human PMNs and human umbilical vein EC (HUVEC); adhesion was quantified by computerized microimaging fluorescence analysis. Both chol-but SLN and sodium butyrate displayed antiadhesive effects on FMLP-and IL-1b-stimulated cells in a concentration-response curve (10 À8 -10 À5 M), but chol-but SLN were in all cases more active. Moreover, chol-but SLN inhibited FMLP-induced adhesion of PMNs to FCS-coated plastic wells, thus showing a direct effect on PMNs, while sodium butyrate had little effect. Confocal microscopy showed that fluorescent SLN entered PMNs and HUVEC after 10 min incubation. Chol-but SLN acted either on activated PMN or HUVEC. 3 Chol-but SLN inhibited O 2 À Á production and myeloperoxidase release by PMNs evoked by FMLP, in a dose-dependent, but not time-dependent, manner and were more active than sodium butyrate. 4 In conclusion, in all tests chol-but SLN were more active than sodium butyrate. Thus, chol-but SLN might be a valid alternative to sodium butyrate in the anti-inflammatory therapy of ulcerative colitis, avoiding complications related to the administration of sodium butyrate.

Research paper thumbnail of Sr-Containing Mesoporous Bioactive Glasses Bio-Functionalized with Recombinant ICOS-Fc: An In Vitro Study

Nanomaterials, Jan 27, 2021

Osteoporotic bone fractures represent a critical clinical issue and require personalized and spec... more Osteoporotic bone fractures represent a critical clinical issue and require personalized and specific treatments in order to stimulate compromised bone tissue regeneration. In this clinical context, the development of smart nano-biomaterials able to synergistically combine chemical and biological cues to exert specific therapeutic effects (i.e., pro-osteogenic, anti-clastogenic) can allow the design of effective medical solutions. With this aim, in this work, strontium-containing mesoporous bioactive glasses (MBGs) were bio-functionalized with ICOS-Fc, a molecule able to reversibly inhibit osteoclast activity by binding the respective ligand (ICOS-L) and to induce a decrease of bone resorption activity. N 2 adsorption analysis and FT-IR spectroscopy were used to assess the successful grafting of ICOS-Fc on the surface of Sr-containing MBGs, which were also proved to retain the peculiar ability to release osteogenic strontium ions and an excellent bioactivity after functionalization. An ELISA-like assay allowed to confirm that grafted ICOS-Fc molecules were able to bind ICOS-L (the ICOS binding ligand) and to investigate the stability of the amide binding to hydrolysis in aqueous environment up to 21 days. In analogy to the free form of the molecule, the inhibitory effect of grafted ICOS-Fc on cell migratory activity was demonstrated by using ICOSL positive cell lines and the ability to inhibit osteoclast differentiation and function was confirmed by monitoring the differentiation of monocyte-derived osteoclasts (MDOCs), which revealed a strong inhibitory effect, also proven by the downregulation of osteoclast differentiation genes. The obtained results showed that the combination of ICOS-Fc with the intrinsic properties of Sr-containing MBGs represents a very promising approach to design personalized solutions for patients affected by compromised bone remodeling (i.e., osteoporosis fractures).

Research paper thumbnail of Sr-Containing Mesoporous Bioactive Glasses Bio-Functionalized with Recombinant ICOS-Fc: An In Vitro Study

Nanomaterials, Jan 27, 2021

Osteoporotic bone fractures represent a critical clinical issue and require personalized and spec... more Osteoporotic bone fractures represent a critical clinical issue and require personalized and specific treatments in order to stimulate compromised bone tissue regeneration. In this clinical context, the development of smart nano-biomaterials able to synergistically combine chemical and biological cues to exert specific therapeutic effects (i.e., pro-osteogenic, anti-clastogenic) can allow the design of effective medical solutions. With this aim, in this work, strontium-containing mesoporous bioactive glasses (MBGs) were bio-functionalized with ICOS-Fc, a molecule able to reversibly inhibit osteoclast activity by binding the respective ligand (ICOS-L) and to induce a decrease of bone resorption activity. N 2 adsorption analysis and FT-IR spectroscopy were used to assess the successful grafting of ICOS-Fc on the surface of Sr-containing MBGs, which were also proved to retain the peculiar ability to release osteogenic strontium ions and an excellent bioactivity after functionalization. An ELISA-like assay allowed to confirm that grafted ICOS-Fc molecules were able to bind ICOS-L (the ICOS binding ligand) and to investigate the stability of the amide binding to hydrolysis in aqueous environment up to 21 days. In analogy to the free form of the molecule, the inhibitory effect of grafted ICOS-Fc on cell migratory activity was demonstrated by using ICOSL positive cell lines and the ability to inhibit osteoclast differentiation and function was confirmed by monitoring the differentiation of monocyte-derived osteoclasts (MDOCs), which revealed a strong inhibitory effect, also proven by the downregulation of osteoclast differentiation genes. The obtained results showed that the combination of ICOS-Fc with the intrinsic properties of Sr-containing MBGs represents a very promising approach to design personalized solutions for patients affected by compromised bone remodeling (i.e., osteoporosis fractures).

Research paper thumbnail of Electrospun Collagen Scaffold Bio-Functionalized with Recombinant ICOS-Fc: An Advanced Approach to Promote Bone Remodelling

Polymers, Sep 9, 2022

The treatment of osteoporotic fractures is a severe clinical issue, especially in cases where low... more The treatment of osteoporotic fractures is a severe clinical issue, especially in cases where low support is provided, e.g., pelvis. New treatments aim to stimulate bone formation in compromised scenarios by using multifunctional biomaterials combined with biofabrication techniques to produce 3D structures (scaffolds) that can support bone formation. Bone's extracellular matrix (ECM) is mainly composed of type I collagen, making this material highly desirable in bone tissue engineering applications, and its bioactivity can be improved by incorporating specific biomolecules. In this work, type I collagen membranes were produced by electrospinning showing a fibre diameter below 200 nm. An optimized one-step strategy allowed to simultaneously crosslink the electrospun membranes and bind ICOS-Fc, a biomolecule able to reversibly inhibit osteoclast activity. The posttreatment did not alter the ECM-like nanostructure of the meshes and the physicochemical properties of collagen. UV-Vis and TGA analyses confirmed both crosslinking and grafting of ICOS-Fc onto the collagen fibres. The preservation of the biological activity of grafted ICOS-Fc was evidenced by the ability to affect the migratory activity of ICOSL-positive cells. The combination of ICOS-Fc with electrospun collagen represents a promising strategy to design multifunctional devices able to boost bone regeneration in osteoporotic fractures.

Research paper thumbnail of Carbosilane Dendrimers Loaded with siRNA Targeting Nrf2 as a Tool to Overcome Cisplatin Chemoresistance in Bladder Cancer Cells

Antioxidants, Oct 14, 2020

The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as the ... more The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as the master regulator of antioxidant and cytoprotective gene expressions. Moreover, it plays a pivotal role in cancer progression. Nrf2 mediates the adaptive response which contributes to the resistance to chemotherapeutic pro-oxidant drugs, such as cisplatin (CDDP), in various tumors, including bladder cancers. For this reason, Nrf2 could be a promising target to overcome chemoresistance. There are several known Nrf2 pharmacological inhibitors; however, most of them are not specific. The use of a specific small interfering RNA (siRNA) targeting the Nrf2 gene (siNrf2) loaded into nanovehicles is an attractive alternative, since it can increase specificity. This study aimed to evaluate the biological activity of siNrf2 loaded on guanidine-terminated carbosilane dendrimers (GCDs) in overcoming CDDP resistance in bladder cancer cells with a high level of Nrf2. Parameters such as viability, proliferation, apoptosis, migration, and oxidative stress level were taken into account. Results demonstrated that siNrf2-GCD treatment sensitized CDDP-resistant cells to CDDP treatment. Moreover, data obtained by treating the non-cancerous human kidney HK-2 cell line strongly suggest a good safety profile of the carbosilane dendrimers loaded with siNrf2. In conclusion, we suggest that siNrf2-GCD is a promising drug delivery system for gene therapy to be used in vivo; and it may represent an important tool in the therapy of CDDP-resistant cancer.

Research paper thumbnail of Latest News on Nanotechnology for Melanoma Therapy and Diagnosis

Melanoma skin cancer is an aggressive tumour with an increasing incidence. In recent years, the t... more Melanoma skin cancer is an aggressive tumour with an increasing incidence. In recent years, the treatment options for the advanced disease have expanded dramatically with the employment of targeted therapy and the immunotherapy. However, the high rate of non-response, the toxicity, and the induced drug resistance remain unmet clinical problems. Scientists are expecting a further advance with the application of nanotechnology in melanoma treatment and diagnosis. In this review, we present an up-date on the latest pre-clinical studies (2015-2016) on nanomedicine with potential use in the clinical management of this disease.

Research paper thumbnail of Our experience with Antineoplastons

Research paper thumbnail of Untangling Extracellular Proteasome-Osteopontin Circuit Dynamics in Multiple Sclerosis

Cells, Mar 20, 2019

The function of proteasomes in extracellular space is still largely unknown. The extracellular pr... more The function of proteasomes in extracellular space is still largely unknown. The extracellular proteasome-osteopontin circuit has recently been hypothesized to be part of the inflammatory machinery regulating relapse/remission phase alternation in multiple sclerosis. However, it is still unclear what dynamics there are between the different elements of the circuit, what the role of proteasome isoforms is, and whether these inflammatory circuit dynamics are associated with the clinical severity of multiple sclerosis. To shed light on these aspects of this novel inflammatory circuit, we integrated in vitro proteasome isoform data, cell chemotaxis cell culture data, and clinical data of multiple sclerosis cohorts in a coherent computational inference framework. Thereby, we modeled extracellular osteopontin-proteasome circuit dynamics during relapse/remission alternation in multiple sclerosis. Applying this computational framework to a longitudinal study on single multiple sclerosis patients suggests a complex interaction between extracellular proteasome isoforms and osteopontin with potential clinical implications.

Research paper thumbnail of Ultrasound-Responsive Nrf2-Targeting siRNA-Loaded Nanobubbles for Enhancing the Treatment of Melanoma

Pharmaceutics, Jan 31, 2022

The siRNA-mediated inhibition of nuclear factor E2-related factor 2 (Nrf2) can be an attractive a... more The siRNA-mediated inhibition of nuclear factor E2-related factor 2 (Nrf2) can be an attractive approach to overcome chemoresistance in various malignant tumors, including melanoma. This work aims at designing a new type of chitosan-shelled nanobubble for the delivery of siRNA against Nrf2 in combination with an ultrasound. A new preparation method based on a water-oil-water (W/O/W) double-emulsion was purposely developed for siRNA encapsulation in aqueous droplets within a nanobubble core. Stable, very small NB formulations were obtained, with sizes of about 100 nm and a positive surface charge. siRNA was efficiently loaded in NBs, reaching an encapsulation efficiency of about 90%. siNrf2-NBs downregulated the target gene in M14 cells, sensitizing the resistant melanoma cells to the cisplatin treatment. The combination with US favored NB cell uptake and transfection efficiency. Based on the results, nanobubbles have shown to be a promising US responsive tool for siRNA delivery, able to overcome chemoresistance in melanoma cancer cells.

Research paper thumbnail of Effetto antiadesivo dell’interazione GAS6-endotelio

Research paper thumbnail of Adhesion of polymorphonuclear cells to endothelial cells is physiologically inhibited by Gas6

Research paper thumbnail of Alendronate-Grafted Nanoemulsions for Bone-Targeted Vincristine Delivery: Preliminary Studies on Cell and Animal Models

Biomolecules, Feb 18, 2024

Bone is a site of distant metastases, which are a common cause of morbidity and mortality with a ... more Bone is a site of distant metastases, which are a common cause of morbidity and mortality with a high socio-economic impact, for many malignant tumours. In order to engineer pharmacological therapies that are suitable for this debilitating disease, this experimental work presents injectable lipid nanoemulsions, which are endowed with a long history of safe clinical usage in parenteral nutrition, their loading with vincristine and their grafting with alendronate, with a dual purpose: merging the anticancer activity of bisphosphonates and vincristine, and enhancing bone-targeted delivery. In cell studies, alendronate synergised with the anti-migration activity of vincristine, which is important as migration plays a key role in the metastatisation process. In preliminary animal studies, carried out thanks to IVIS technology, alendronate conjugation enhanced the bone targeting of fluorescently labelled nanoemulsions. These encouraging results will drive further studies on suitable animal models of the disease.

Research paper thumbnail of Development and Characterization of Solid Lipid Nanoparticles Loaded with a Highly Active Doxorubicin Derivative

Nanomaterials, Feb 16, 2018

Solid lipid nanoparticles (SLNs) comprise a versatile drug delivery system that has been develope... more Solid lipid nanoparticles (SLNs) comprise a versatile drug delivery system that has been developed for the treatment of a variety of diseases. The present study will investigate the feasibility of entrapping an active doxorubicin prodrug (a squalenoyl-derivative) in SLNs. The doxorubicin derivative-loaded SLNs are spherically shaped, have a mean diameter of 300-400 nm and show 85% w/w drug entrapment efficiency. The effects on cell growth of loaded SLNs, free doxorubicin and the prodrug have been examined using cytotoxicity and colony-forming assays in both human ovarian cancer line A2780 wild-type and doxorubicin-resistant cells. Further assessments as to the treatment's ability to induce cell death by apoptosis have been carried out by analyzing annexin-V staining and the activation of caspase-3. The in vitro data demonstrate that the delivery of the squalenoyl-doxorubicin derivative by SLNs increases its cytotoxic activity, as well as its apoptosis effect. This effect was particularly evident in doxorubicin-resistant cells.

Research paper thumbnail of Alendronate-Grafted Nanoemulsions for Bone-Targeted Vincristine Delivery: Preliminary Studies on Cell and Animal Models

Biomolecules, Feb 18, 2024

Bone is a site of distant metastases, which are a common cause of morbidity and mortality with a ... more Bone is a site of distant metastases, which are a common cause of morbidity and mortality with a high socio-economic impact, for many malignant tumours. In order to engineer pharmacological therapies that are suitable for this debilitating disease, this experimental work presents injectable lipid nanoemulsions, which are endowed with a long history of safe clinical usage in parenteral nutrition, their loading with vincristine and their grafting with alendronate, with a dual purpose: merging the anticancer activity of bisphosphonates and vincristine, and enhancing bone-targeted delivery. In cell studies, alendronate synergised with the anti-migration activity of vincristine, which is important as migration plays a key role in the metastatisation process. In preliminary animal studies, carried out thanks to IVIS technology, alendronate conjugation enhanced the bone targeting of fluorescently labelled nanoemulsions. These encouraging results will drive further studies on suitable animal models of the disease.

Research paper thumbnail of Development and Characterization of Solid Lipid Nanoparticles Loaded with a Highly Active Doxorubicin Derivative

Nanomaterials, Feb 16, 2018

Solid lipid nanoparticles (SLNs) comprise a versatile drug delivery system that has been develope... more Solid lipid nanoparticles (SLNs) comprise a versatile drug delivery system that has been developed for the treatment of a variety of diseases. The present study will investigate the feasibility of entrapping an active doxorubicin prodrug (a squalenoyl-derivative) in SLNs. The doxorubicin derivative-loaded SLNs are spherically shaped, have a mean diameter of 300-400 nm and show 85% w/w drug entrapment efficiency. The effects on cell growth of loaded SLNs, free doxorubicin and the prodrug have been examined using cytotoxicity and colony-forming assays in both human ovarian cancer line A2780 wild-type and doxorubicin-resistant cells. Further assessments as to the treatment's ability to induce cell death by apoptosis have been carried out by analyzing annexin-V staining and the activation of caspase-3. The in vitro data demonstrate that the delivery of the squalenoyl-doxorubicin derivative by SLNs increases its cytotoxic activity, as well as its apoptosis effect. This effect was particularly evident in doxorubicin-resistant cells.

Research paper thumbnail of Crosstalk between Nrf2 and YAP contributes to maintaining the antioxidant potential and chemoresistance in bladder cancer

Free Radical Biology and Medicine, Feb 1, 2018

Redox adaptation plays an important role in cancer cells drug resistance. The antioxidant respons... more Redox adaptation plays an important role in cancer cells drug resistance. The antioxidant response is principally mediated by the transcription factor Nrf2, that induces the transcriptional activation of several genes involved in GSH synthesis, chemoresistance, and cytoprotection. YAP is emerging as a key mediator of chemoresistance in a variety of cancers, but its role in controlling the antioxidant status of the cells is yet elusive. Here, we show that impairing YAP protein expression reduced GSH content and Nrf2 protein and mRNA expression in bladder cancer cells. Moreover, in YAP-knockdown cells the expression of FOXM1, a transcription factor involved in Nrf2 transcription, was down-regulated and the silencing of FOXM1 reduced Nrf2 expression. On the other hand, the silencing of Nrf2, as well as the depletion of GSH by BSO treatment, inhibited YAP expression, suggesting that cross-talk exists between YAP and Nrf2 proteins. Importantly, we found that silencing either YAP or Nrf2 enhanced sensitivity of bladder cancer cells to cytotoxic agents and reduced their migration. Furthermore, the inhibition of both YAP and Nrf2 expressions significantly increased cytotoxic drug sensitivity and synergistically reduced the migration of chemoresistant bladder cancer cells. These findings provide a rationale for targeting these transcriptional regulators in patients with chemoresistant bladder cancer, expressing high YAP and bearing a proficient antioxidant system.

Research paper thumbnail of Crosstalk between Nrf2 and YAP contributes to maintaining the antioxidant potential and chemoresistance in bladder cancer

Free Radical Biology and Medicine, Feb 1, 2018

Redox adaptation plays an important role in cancer cells drug resistance. The antioxidant respons... more Redox adaptation plays an important role in cancer cells drug resistance. The antioxidant response is principally mediated by the transcription factor Nrf2, that induces the transcriptional activation of several genes involved in GSH synthesis, chemoresistance, and cytoprotection. YAP is emerging as a key mediator of chemoresistance in a variety of cancers, but its role in controlling the antioxidant status of the cells is yet elusive. Here, we show that impairing YAP protein expression reduced GSH content and Nrf2 protein and mRNA expression in bladder cancer cells. Moreover, in YAP-knockdown cells the expression of FOXM1, a transcription factor involved in Nrf2 transcription, was down-regulated and the silencing of FOXM1 reduced Nrf2 expression. On the other hand, the silencing of Nrf2, as well as the depletion of GSH by BSO treatment, inhibited YAP expression, suggesting that cross-talk exists between YAP and Nrf2 proteins. Importantly, we found that silencing either YAP or Nrf2 enhanced sensitivity of bladder cancer cells to cytotoxic agents and reduced their migration. Furthermore, the inhibition of both YAP and Nrf2 expressions significantly increased cytotoxic drug sensitivity and synergistically reduced the migration of chemoresistant bladder cancer cells. These findings provide a rationale for targeting these transcriptional regulators in patients with chemoresistant bladder cancer, expressing high YAP and bearing a proficient antioxidant system.

Research paper thumbnail of Post-translational inhibition of YAP oncogene expression by 4-hydroxynonenal in bladder cancer cells

Free Radical Biology and Medicine, Sep 1, 2019

The transcriptional regulator YAP plays an important role in cancer progression and is negatively... more The transcriptional regulator YAP plays an important role in cancer progression and is negatively controlled by the Hippo pathway. YAP is frequently overexpressed in human cancers, including bladder cancer. Interestingly, YAP expression and activity can be inhibited by pro-oxidant conditions; moreover, YAP itself can also affect the cellular redox status through multiple mechanisms. 4-Hydroxynonenal (HNE), the most intensively studied end product of lipid peroxidation, is a pro-oxidant agent able to deplete GSH and has an anti-tumoral effect by affecting multiple signal pathways, including the down-regulation of oncogene expressions. These observations prompted us to investigate the effect of HNE on YAP expression and activity. We demonstrated that HNE inhibited YAP expression and its target genes in bladder cancer cells through a redox-dependent mechanism. Moreover, the YAP down-regulation was accompanied by an inhibition of proliferation, migration, invasion, and angiogenesis, as well as by an accumulation of cells in the G2/M phase of cell cycle and by an induction of apoptosis. We also established the YAP role in inhibiting cell viability and inducing apoptosis in HNE-treated cells by using an expression vector for YAP. Furthermore, we identified a post-translational mechanism for the HNEinduced YAP expression inhibition, involving an increase of YAP phosphorylation and ubiquitination, leading to proteasomal degradation. Our data established that HNE can posttranslationally down-regulate YAP through a redox-dependent mechanism and that this modulation can contribute to determining the specific anti-cancer effects of HNE.

Research paper thumbnail of Post-translational inhibition of YAP oncogene expression by 4-hydroxynonenal in bladder cancer cells

Free Radical Biology and Medicine, Sep 1, 2019

The transcriptional regulator YAP plays an important role in cancer progression and is negatively... more The transcriptional regulator YAP plays an important role in cancer progression and is negatively controlled by the Hippo pathway. YAP is frequently overexpressed in human cancers, including bladder cancer. Interestingly, YAP expression and activity can be inhibited by pro-oxidant conditions; moreover, YAP itself can also affect the cellular redox status through multiple mechanisms. 4-Hydroxynonenal (HNE), the most intensively studied end product of lipid peroxidation, is a pro-oxidant agent able to deplete GSH and has an anti-tumoral effect by affecting multiple signal pathways, including the down-regulation of oncogene expressions. These observations prompted us to investigate the effect of HNE on YAP expression and activity. We demonstrated that HNE inhibited YAP expression and its target genes in bladder cancer cells through a redox-dependent mechanism. Moreover, the YAP down-regulation was accompanied by an inhibition of proliferation, migration, invasion, and angiogenesis, as well as by an accumulation of cells in the G2/M phase of cell cycle and by an induction of apoptosis. We also established the YAP role in inhibiting cell viability and inducing apoptosis in HNE-treated cells by using an expression vector for YAP. Furthermore, we identified a post-translational mechanism for the HNEinduced YAP expression inhibition, involving an increase of YAP phosphorylation and ubiquitination, leading to proteasomal degradation. Our data established that HNE can posttranslationally down-regulate YAP through a redox-dependent mechanism and that this modulation can contribute to determining the specific anti-cancer effects of HNE.

Research paper thumbnail of Cholesteryl butyrate solid lipid nanoparticles inhibit adhesion of human neutrophils to endothelial cells

British Journal of Pharmacology, Jul 1, 2006

Adhesion of polymorphonuclear cells (PMNs) to vascular endothelial cells (EC) is a critical step ... more Adhesion of polymorphonuclear cells (PMNs) to vascular endothelial cells (EC) is a critical step in recruitment and infiltration of leukocytes into tissues during inflammation. High doses of butyric acid have been shown to ameliorate inflammation in inflammatory bowel diseases (IBD). Cholesteryl-butyrate solid lipid nanoparticles (chol-but SLN) as prodrug are a possible delivery system for butyric acid. 2 Sodium butyrate or chol-but SLN were coincubated with human PMNs and human umbilical vein EC (HUVEC); adhesion was quantified by computerized microimaging fluorescence analysis. Both chol-but SLN and sodium butyrate displayed antiadhesive effects on FMLP-and IL-1b-stimulated cells in a concentration-response curve (10 À8 -10 À5 M), but chol-but SLN were in all cases more active. Moreover, chol-but SLN inhibited FMLP-induced adhesion of PMNs to FCS-coated plastic wells, thus showing a direct effect on PMNs, while sodium butyrate had little effect. Confocal microscopy showed that fluorescent SLN entered PMNs and HUVEC after 10 min incubation. Chol-but SLN acted either on activated PMN or HUVEC. 3 Chol-but SLN inhibited O 2 À Á production and myeloperoxidase release by PMNs evoked by FMLP, in a dose-dependent, but not time-dependent, manner and were more active than sodium butyrate. 4 In conclusion, in all tests chol-but SLN were more active than sodium butyrate. Thus, chol-but SLN might be a valid alternative to sodium butyrate in the anti-inflammatory therapy of ulcerative colitis, avoiding complications related to the administration of sodium butyrate.

Research paper thumbnail of Cholesteryl butyrate solid lipid nanoparticles inhibit adhesion of human neutrophils to endothelial cells

British Journal of Pharmacology, Jul 1, 2006

Adhesion of polymorphonuclear cells (PMNs) to vascular endothelial cells (EC) is a critical step ... more Adhesion of polymorphonuclear cells (PMNs) to vascular endothelial cells (EC) is a critical step in recruitment and infiltration of leukocytes into tissues during inflammation. High doses of butyric acid have been shown to ameliorate inflammation in inflammatory bowel diseases (IBD). Cholesteryl-butyrate solid lipid nanoparticles (chol-but SLN) as prodrug are a possible delivery system for butyric acid. 2 Sodium butyrate or chol-but SLN were coincubated with human PMNs and human umbilical vein EC (HUVEC); adhesion was quantified by computerized microimaging fluorescence analysis. Both chol-but SLN and sodium butyrate displayed antiadhesive effects on FMLP-and IL-1b-stimulated cells in a concentration-response curve (10 À8 -10 À5 M), but chol-but SLN were in all cases more active. Moreover, chol-but SLN inhibited FMLP-induced adhesion of PMNs to FCS-coated plastic wells, thus showing a direct effect on PMNs, while sodium butyrate had little effect. Confocal microscopy showed that fluorescent SLN entered PMNs and HUVEC after 10 min incubation. Chol-but SLN acted either on activated PMN or HUVEC. 3 Chol-but SLN inhibited O 2 À Á production and myeloperoxidase release by PMNs evoked by FMLP, in a dose-dependent, but not time-dependent, manner and were more active than sodium butyrate. 4 In conclusion, in all tests chol-but SLN were more active than sodium butyrate. Thus, chol-but SLN might be a valid alternative to sodium butyrate in the anti-inflammatory therapy of ulcerative colitis, avoiding complications related to the administration of sodium butyrate.

Research paper thumbnail of Sr-Containing Mesoporous Bioactive Glasses Bio-Functionalized with Recombinant ICOS-Fc: An In Vitro Study

Nanomaterials, Jan 27, 2021

Osteoporotic bone fractures represent a critical clinical issue and require personalized and spec... more Osteoporotic bone fractures represent a critical clinical issue and require personalized and specific treatments in order to stimulate compromised bone tissue regeneration. In this clinical context, the development of smart nano-biomaterials able to synergistically combine chemical and biological cues to exert specific therapeutic effects (i.e., pro-osteogenic, anti-clastogenic) can allow the design of effective medical solutions. With this aim, in this work, strontium-containing mesoporous bioactive glasses (MBGs) were bio-functionalized with ICOS-Fc, a molecule able to reversibly inhibit osteoclast activity by binding the respective ligand (ICOS-L) and to induce a decrease of bone resorption activity. N 2 adsorption analysis and FT-IR spectroscopy were used to assess the successful grafting of ICOS-Fc on the surface of Sr-containing MBGs, which were also proved to retain the peculiar ability to release osteogenic strontium ions and an excellent bioactivity after functionalization. An ELISA-like assay allowed to confirm that grafted ICOS-Fc molecules were able to bind ICOS-L (the ICOS binding ligand) and to investigate the stability of the amide binding to hydrolysis in aqueous environment up to 21 days. In analogy to the free form of the molecule, the inhibitory effect of grafted ICOS-Fc on cell migratory activity was demonstrated by using ICOSL positive cell lines and the ability to inhibit osteoclast differentiation and function was confirmed by monitoring the differentiation of monocyte-derived osteoclasts (MDOCs), which revealed a strong inhibitory effect, also proven by the downregulation of osteoclast differentiation genes. The obtained results showed that the combination of ICOS-Fc with the intrinsic properties of Sr-containing MBGs represents a very promising approach to design personalized solutions for patients affected by compromised bone remodeling (i.e., osteoporosis fractures).

Research paper thumbnail of Sr-Containing Mesoporous Bioactive Glasses Bio-Functionalized with Recombinant ICOS-Fc: An In Vitro Study

Nanomaterials, Jan 27, 2021

Osteoporotic bone fractures represent a critical clinical issue and require personalized and spec... more Osteoporotic bone fractures represent a critical clinical issue and require personalized and specific treatments in order to stimulate compromised bone tissue regeneration. In this clinical context, the development of smart nano-biomaterials able to synergistically combine chemical and biological cues to exert specific therapeutic effects (i.e., pro-osteogenic, anti-clastogenic) can allow the design of effective medical solutions. With this aim, in this work, strontium-containing mesoporous bioactive glasses (MBGs) were bio-functionalized with ICOS-Fc, a molecule able to reversibly inhibit osteoclast activity by binding the respective ligand (ICOS-L) and to induce a decrease of bone resorption activity. N 2 adsorption analysis and FT-IR spectroscopy were used to assess the successful grafting of ICOS-Fc on the surface of Sr-containing MBGs, which were also proved to retain the peculiar ability to release osteogenic strontium ions and an excellent bioactivity after functionalization. An ELISA-like assay allowed to confirm that grafted ICOS-Fc molecules were able to bind ICOS-L (the ICOS binding ligand) and to investigate the stability of the amide binding to hydrolysis in aqueous environment up to 21 days. In analogy to the free form of the molecule, the inhibitory effect of grafted ICOS-Fc on cell migratory activity was demonstrated by using ICOSL positive cell lines and the ability to inhibit osteoclast differentiation and function was confirmed by monitoring the differentiation of monocyte-derived osteoclasts (MDOCs), which revealed a strong inhibitory effect, also proven by the downregulation of osteoclast differentiation genes. The obtained results showed that the combination of ICOS-Fc with the intrinsic properties of Sr-containing MBGs represents a very promising approach to design personalized solutions for patients affected by compromised bone remodeling (i.e., osteoporosis fractures).

Research paper thumbnail of Electrospun Collagen Scaffold Bio-Functionalized with Recombinant ICOS-Fc: An Advanced Approach to Promote Bone Remodelling

Polymers, Sep 9, 2022

The treatment of osteoporotic fractures is a severe clinical issue, especially in cases where low... more The treatment of osteoporotic fractures is a severe clinical issue, especially in cases where low support is provided, e.g., pelvis. New treatments aim to stimulate bone formation in compromised scenarios by using multifunctional biomaterials combined with biofabrication techniques to produce 3D structures (scaffolds) that can support bone formation. Bone's extracellular matrix (ECM) is mainly composed of type I collagen, making this material highly desirable in bone tissue engineering applications, and its bioactivity can be improved by incorporating specific biomolecules. In this work, type I collagen membranes were produced by electrospinning showing a fibre diameter below 200 nm. An optimized one-step strategy allowed to simultaneously crosslink the electrospun membranes and bind ICOS-Fc, a biomolecule able to reversibly inhibit osteoclast activity. The posttreatment did not alter the ECM-like nanostructure of the meshes and the physicochemical properties of collagen. UV-Vis and TGA analyses confirmed both crosslinking and grafting of ICOS-Fc onto the collagen fibres. The preservation of the biological activity of grafted ICOS-Fc was evidenced by the ability to affect the migratory activity of ICOSL-positive cells. The combination of ICOS-Fc with electrospun collagen represents a promising strategy to design multifunctional devices able to boost bone regeneration in osteoporotic fractures.

Research paper thumbnail of Carbosilane Dendrimers Loaded with siRNA Targeting Nrf2 as a Tool to Overcome Cisplatin Chemoresistance in Bladder Cancer Cells

Antioxidants, Oct 14, 2020

The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as the ... more The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as the master regulator of antioxidant and cytoprotective gene expressions. Moreover, it plays a pivotal role in cancer progression. Nrf2 mediates the adaptive response which contributes to the resistance to chemotherapeutic pro-oxidant drugs, such as cisplatin (CDDP), in various tumors, including bladder cancers. For this reason, Nrf2 could be a promising target to overcome chemoresistance. There are several known Nrf2 pharmacological inhibitors; however, most of them are not specific. The use of a specific small interfering RNA (siRNA) targeting the Nrf2 gene (siNrf2) loaded into nanovehicles is an attractive alternative, since it can increase specificity. This study aimed to evaluate the biological activity of siNrf2 loaded on guanidine-terminated carbosilane dendrimers (GCDs) in overcoming CDDP resistance in bladder cancer cells with a high level of Nrf2. Parameters such as viability, proliferation, apoptosis, migration, and oxidative stress level were taken into account. Results demonstrated that siNrf2-GCD treatment sensitized CDDP-resistant cells to CDDP treatment. Moreover, data obtained by treating the non-cancerous human kidney HK-2 cell line strongly suggest a good safety profile of the carbosilane dendrimers loaded with siNrf2. In conclusion, we suggest that siNrf2-GCD is a promising drug delivery system for gene therapy to be used in vivo; and it may represent an important tool in the therapy of CDDP-resistant cancer.

Research paper thumbnail of Latest News on Nanotechnology for Melanoma Therapy and Diagnosis

Melanoma skin cancer is an aggressive tumour with an increasing incidence. In recent years, the t... more Melanoma skin cancer is an aggressive tumour with an increasing incidence. In recent years, the treatment options for the advanced disease have expanded dramatically with the employment of targeted therapy and the immunotherapy. However, the high rate of non-response, the toxicity, and the induced drug resistance remain unmet clinical problems. Scientists are expecting a further advance with the application of nanotechnology in melanoma treatment and diagnosis. In this review, we present an up-date on the latest pre-clinical studies (2015-2016) on nanomedicine with potential use in the clinical management of this disease.

Research paper thumbnail of Our experience with Antineoplastons

Research paper thumbnail of Untangling Extracellular Proteasome-Osteopontin Circuit Dynamics in Multiple Sclerosis

Cells, Mar 20, 2019

The function of proteasomes in extracellular space is still largely unknown. The extracellular pr... more The function of proteasomes in extracellular space is still largely unknown. The extracellular proteasome-osteopontin circuit has recently been hypothesized to be part of the inflammatory machinery regulating relapse/remission phase alternation in multiple sclerosis. However, it is still unclear what dynamics there are between the different elements of the circuit, what the role of proteasome isoforms is, and whether these inflammatory circuit dynamics are associated with the clinical severity of multiple sclerosis. To shed light on these aspects of this novel inflammatory circuit, we integrated in vitro proteasome isoform data, cell chemotaxis cell culture data, and clinical data of multiple sclerosis cohorts in a coherent computational inference framework. Thereby, we modeled extracellular osteopontin-proteasome circuit dynamics during relapse/remission alternation in multiple sclerosis. Applying this computational framework to a longitudinal study on single multiple sclerosis patients suggests a complex interaction between extracellular proteasome isoforms and osteopontin with potential clinical implications.

Research paper thumbnail of Ultrasound-Responsive Nrf2-Targeting siRNA-Loaded Nanobubbles for Enhancing the Treatment of Melanoma

Pharmaceutics, Jan 31, 2022

The siRNA-mediated inhibition of nuclear factor E2-related factor 2 (Nrf2) can be an attractive a... more The siRNA-mediated inhibition of nuclear factor E2-related factor 2 (Nrf2) can be an attractive approach to overcome chemoresistance in various malignant tumors, including melanoma. This work aims at designing a new type of chitosan-shelled nanobubble for the delivery of siRNA against Nrf2 in combination with an ultrasound. A new preparation method based on a water-oil-water (W/O/W) double-emulsion was purposely developed for siRNA encapsulation in aqueous droplets within a nanobubble core. Stable, very small NB formulations were obtained, with sizes of about 100 nm and a positive surface charge. siRNA was efficiently loaded in NBs, reaching an encapsulation efficiency of about 90%. siNrf2-NBs downregulated the target gene in M14 cells, sensitizing the resistant melanoma cells to the cisplatin treatment. The combination with US favored NB cell uptake and transfection efficiency. Based on the results, nanobubbles have shown to be a promising US responsive tool for siRNA delivery, able to overcome chemoresistance in melanoma cancer cells.

Research paper thumbnail of Effetto antiadesivo dell’interazione GAS6-endotelio

Research paper thumbnail of Adhesion of polymorphonuclear cells to endothelial cells is physiologically inhibited by Gas6