Cindy Kunne - Academia.edu (original) (raw)
Papers by Cindy Kunne
J Inherit Metab Dis, 2006
Inactivation of prostaglandin E(2) (PGE(2)) in the liver is a rapid process and occurs mainly thr... more Inactivation of prostaglandin E(2) (PGE(2)) in the liver is a rapid process and occurs mainly through beta-oxidation in the peroxisome of the hepatocyte. Biliary excretion of PGE(2) is also a means of elimination from the liver. We investigated the role of multidrug resistance-associated protein 2 (MRP2) in the transport of PGE(2). Biliary PGE(2) elimination was measured in liver perfusions in Wistar and MRP2-deficient TR(-) rats. Furthermore, transport experiments were performed in membrane vesicles from human MRP2-infected Spodoptera frugiperda 21 (Sf21) insect cells. The liver perfusions showed a 3.5 times higher percentage of undegraded [(3)H]PGE(2) in bile of Wistar rats in comparison with MRP2 deficient (TR(-)) rats (3.6% vs. 1.1%, respectively; P<0.05). MRP2-mediated transport of the model substrate [(3)H]DNP-SG was inhibited by PGE(2). Half maximal inhibition was achieved at a concentration of approximately 15 microM PGE(2). In addition, [(3)H]PGE(2) uptake in these vesicles was detected, and determined to be ATP dependent. MRP2 mediates the transport of PGE(2) and its breakdown products. The biliary excretion of PGE(2) via MRP2 may contribute to rapid elimination of the prostaglandin but might also serve to relay prostaglandin signalling to the biliary tree.
J Neurol Neurosurg Psychiat, 2009
Ezetimibe lowers plasma cholesterol levels by inhibiting the uptake of cholesterol in the intesti... more Ezetimibe lowers plasma cholesterol levels by inhibiting the uptake of cholesterol in the intestine. Because of the extensive enterohepatic circulation of ezetimibe, relatively low doses are required to be effective. In blood and bile the majority of ezetimibe is present as a glucuronide conjugate, which is formed in the enterocyte. Presently, it is not clear which mechanisms are responsible for this efficient enterohepatic circulation. Abcc2, Abcc3, and Abcg2 are ATP-binding cassette (ABC) transporters that are expressed in both liver and intestine and are capable of transporting glucuronidated compounds. The aim of this study was to investigate the contribution of these transporters in the enterohepatic cycling of ezetimibe glucuronide (Ez-gluc). Transport studies were performed in plasma membrane vesicles from ABCC2-, ABCC3-, and ABCG2-expressing Sf21 insect cells. Furthermore, intestinal explants from wild-type and Abcc3(-/-) mice were used to study vectorial transport in a Ussing chamber setup. Finally, biliary excretion of Ez-gluc was measured in vivo after duodenal delivery of ezetimibe in wild-type, Abcc3(-/-), Abcc2(-/-), Abcg2(-/-), and Abcg2(-/-)/Abcc2(-/-) mice. ABCC3-, ABCC2-, and ABCG2-mediated transport was dose dependently inhibited by Ez-gluc. In the Ussing chamber Ez-gluc recovered from the basolateral side was significantly reduced in duodenal (2.2%), in jejunal (23%), and in ileal (23%) tissue of Abcc3(-/-) mice compared with that in tissues of wild-type mice. Biliary excretion of Ez-gluc was significantly reduced in Abcc3(-/-) (34%), Abcc2(-/-) (56%), and Abcg2(-/-)/Abcc2(-/-) (2.5%) compared with that in wild-type mice. These data demonstrate that the enterohepatic circulation of Ez-gluc strongly depends on the joint function of Abcc3, Abcc2, and Abcg2.
Peritoneal Dialysis International, Sep 1, 2008
In parietal cells, basolateral Ae2 Cl /HCO 3 exchanger
Atherosclerosis Supplements, 2006
Laboratory investigation; a journal of technical methods and pathology, 2014
Progressive familial intrahepatic cholestasis (PFIC) types 1 and 3 are severe cholestatic liver d... more Progressive familial intrahepatic cholestasis (PFIC) types 1 and 3 are severe cholestatic liver diseases caused by deficiency of ATB8B1 and ABCB4, respectively. Mouse models for PFIC display mild phenotypes compared with human patients, and this can be explained by the difference in bile salt pool composition. Mice, unlike humans, have the ability to detoxify hydrophobic bile salts by cytochrome P450-mediated (re)hydroxylation and thus have a less toxic bile salt pool. We have crossed mouse models for PFIC1 and PFIC3 with Hrn mice that have a reduced capacity to (re)hydroxylate bile salts. Double transgenes were obtained by backcrossing Atp8b1(G308V/G308V) and Abcb4(-/-) mice with Hrn mice that have a liver-specific disruption of the cytochrome P450 reductase gene and therefore have markedly reduced P450 activity. In these mice, a more hydrophobic bile salt pool was instilled by cholic acid supplementation of the diet, and bile formation and liver pathology was studied. As opposed t...
Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis
Conventional lactate-buffered peritoneal dialysis (PD) fluids containing glucose and glucose degr... more Conventional lactate-buffered peritoneal dialysis (PD) fluids containing glucose and glucose degradation products are believed to contribute to the development of fibrosis and angiogenesis in the dialyzed peritoneum. To reduce potential negative effects of lactate, pyruvate was substituted as a buffer and its effects on peritoneal pathological alterations were studied in a chronic peritoneal exposure model in the rat. 20 Wistar rats were infused intraperitoneally with pyruvate-buffered (n = 9) or lactate-buffered PD fluid. After 20 weeks of daily infusion, peritoneal function was assessed. In omental peritoneal tissue, the number of blood vessels was analyzed following alpha-smooth muscle actin staining. The degree of fibrosis was quantitated in Picro Sirius Red-stained sections and by assessment of the hydroxyproline content. Plasma lactate/pyruvate and betahydroxybutyrate/acetoacetate (BBA/AA) ratios were determined. Plasma and dialysate vascular endothelial growth factor (VEGF) l...
Molecular therapy : the journal of the American Society of Gene Therapy, 2006
Crigler-Najjar (CN) patients have no bilirubin UDP glucuronosyltransferase (UGT1A1) activity and ... more Crigler-Najjar (CN) patients have no bilirubin UDP glucuronosyltransferase (UGT1A1) activity and suffer brain damage because of bilirubin toxicity. Vectors based on adeno-associated virus (AAV) serotype 2 transduce liver cells with relatively low efficiency. Recently, AAV serotypes 1, 6, and 8 have been shown to be more efficient for liver cell transduction. We compared AAV serotypes 1, 2, 6, and 8 for correction of UGT1A1 deficiency in the Gunn rat model of CN disease. Adult Gunn rats were injected with CMV-UGT1A1 AAV vectors. Serum bilirubin was decreased over the first year by 64% for AAV1, 16% for AAV2, 25% for AAV6, and 35% for AAV8. Antibodies to UGT1A1 were detected after injection of all AAV serotypes. An AAV1 UGT1A1 vector with the liver-specific albumin promoter corrected serum bilirubin levels but did not induce UGT1A1 antibodies. Two years after injection of AAV vectors all animals had large lipid deposits in the liver. These lipid deposits were not seen in age-matched c...
Atherosclerosis Supplements, 2008
Neuroendocrinology, 2002
We studied the long-term effect of neonatal treatment with the synthetic glucocorticoid dexametha... more We studied the long-term effect of neonatal treatment with the synthetic glucocorticoid dexamethasone (DEX) on stress responsivity later in life. It was found that the plasma adrenocorticotropin hormone (ACTH) and corticosterone (CORT) responses induced by novelty or conditioned fear stress were markedly attenuated in adult rats that had been neonatally treated with DEX as compared with saline (SAL)-treated controls. Since there were no differences in the heart rate, body temperature, plasma noradrenaline, plasma adrenaline and behavioral responses to these stressors, this points to a deficit within the hypothalamic-pituitary-adrenal (HPA) axis of DEX rats. We found no differences between DEX and SAL rats in basal plasma CORT concentrations measured throughout the circadian cycle, nor in the fraction unbound of CORT circulating under resting conditions, indicating normal tonic regulation of the HPA axis in DEX rats. Since we also found no differences in the hormonal responses induced by intravenous injection of graded doses of ACTH or corticotropin-releasing hormone (CRH), we investigated the sensitivity of the HPA response to stress for inhibition by glucocorticoids. Pretreatment with a low dose of CORT that did not affect the HPA response of SAL rats markedly inhibited the ACTH and CORT responses induced by novelty stress in DEX rats. This strongly suggests that an enhanced corticosteroid feedback underlies the blunted HPA response to stress in DEX rats. Finally, using quantitative immunocytochemistry, we found an increase in arginine-vasopressin (AVP) but not CRH stores in the external zone of the median eminence, suggesting an altered AVP/CRH ratio in the secretory output of the hypophysiotropic paraventricular nucleus. Taken together, our results show that exposure to DEX during early life leads to hyporesponsivity of the HPA axis to stress most likely due to hypersensitivity of the axis for negative feedback by corticosteroids at the suprapituitary level.
Molecular Pharmaceutics, 2006
Liver International, 2006
Inactivation of prostaglandin E(2) (PGE(2)) in the liver is a rapid process and occurs mainly thr... more Inactivation of prostaglandin E(2) (PGE(2)) in the liver is a rapid process and occurs mainly through beta-oxidation in the peroxisome of the hepatocyte. Biliary excretion of PGE(2) is also a means of elimination from the liver. We investigated the role of multidrug resistance-associated protein 2 (MRP2) in the transport of PGE(2). Biliary PGE(2) elimination was measured in liver perfusions in Wistar and MRP2-deficient TR(-) rats. Furthermore, transport experiments were performed in membrane vesicles from human MRP2-infected Spodoptera frugiperda 21 (Sf21) insect cells. The liver perfusions showed a 3.5 times higher percentage of undegraded [(3)H]PGE(2) in bile of Wistar rats in comparison with MRP2 deficient (TR(-)) rats (3.6% vs. 1.1%, respectively; P<0.05). MRP2-mediated transport of the model substrate [(3)H]DNP-SG was inhibited by PGE(2). Half maximal inhibition was achieved at a concentration of approximately 15 microM PGE(2). In addition, [(3)H]PGE(2) uptake in these vesicles was detected, and determined to be ATP dependent. MRP2 mediates the transport of PGE(2) and its breakdown products. The biliary excretion of PGE(2) via MRP2 may contribute to rapid elimination of the prostaglandin but might also serve to relay prostaglandin signalling to the biliary tree.
Journal of Pharmacology and Experimental Therapeutics, 2010
Cholyl-L-lysyl-fluorescein (CLF) is a fluorescent bile salt derivative that is being developed as... more Cholyl-L-lysyl-fluorescein (CLF) is a fluorescent bile salt derivative that is being developed as an agent for determining in vivo liver function. However, the mechanisms of uptake and excretion by hepatocytes have not been rigorously studied. We have directly assessed the transport capacity of various hepatobiliary transporters for CLF. Uptake experiments were performed in Chinese hamster ovary cells transfected with human NTCP, OATP1B1, OATP1B3, and OATP2B1. Conversely, excretory systems were tested with plasma membrane vesicles from Sf21 insect cells expressing human ABCB11, ABCC2, ABCC3, and ABCG2. In addition, plasma clearance and biliary excretion of CLF were examined in wild-type, Abcc2(-/-), and Abcc3(-/-) mice. Human Na(+)-dependent taurocholic-cotransporting polypeptide (NTCP) and ATP-binding cassette B11 (ABCB11) were incapable of transporting CLF. In contrast, high-affinity transport of CLF was observed for organic anion-transporting polypeptide 1B3 (OATP1B3), ABCC2, and ABCC3 with K(m) values of 4.6 +/- 2.7, 3.3 +/- 2.0, and 3.7 +/- 1.0 microM, respectively. In Abcc2(-/-) mice biliary excretion of CLF was strongly reduced compared with wild-type mice. This resulted in a much higher hepatic retention of CLF in Abcc2(-/-) versus wild-type mice: 64 versus 1% of the administered dose (2 h after administration). In mice intestinal uptake of CLF was negligible compared with that of taurocholate. Our conclusion is that human NTCP and ABCB11 are incapable of transporting CLF, whereas OATP1B3 and ABCC2/Abcc2 most likely mediate hepatic uptake and biliary excretion of CLF, respectively. CLF can be transported back into the blood by ABCC3. Enterohepatic circulation of CLF is minimal. This renders CLF suitable as an agent for assessing in vivo liver function.
The Journal of Nutritional Biochemistry, 2010
Cafestol and kahweol are diterpene compounds present in unfiltered coffees. Cafestol is known as ... more Cafestol and kahweol are diterpene compounds present in unfiltered coffees. Cafestol is known as the most potent cholesterol-raising agent that may be present in the human diet. Remarkably, the mechanisms behind this effect have only been partly resolved so far. Even less is known about the metabolic fate of cafestol and kahweol. From the structure of cafestol, carrying a furan moiety, we hypothesized that epoxidation may not only be an important biotransformation route but that this also plays a role in its effects found. In bile duct-cannulated mice, dosed with cafestol, we were able to demonstrate the presence of epoxy-glutathione (GSH) conjugates, GSH conjugates and glucuronide conjugates. In addition, it was shown that cafestol was able to induce an electrophile-responsive element (EpRE). Using a murine hepatoma cell line with a luciferase reporter gene under control of an EpRE from the human NQO1 regulatory region, we also found that metabolic activation by CYP450 enzymes is needed for EpRE induction. Furthermore, raising intracellular GSH resulted in a decrease in EpRE-mediated gene induction, whereas lowering intracellular GSH levels increased EpRE-mediated gene induction. In conclusion, evidence suggests that cafestol induces EpRE, apparently via a bioactivation process that possibly involves epoxidation of the furan ring. The epoxides themselves appear subject to conjugation with GSH. The effects on EpRE can also explain the induction of GSH which seems to be involved in the reported beneficial effects of cafestol, for example, when administered with aflatoxin B1 or other toxic or carcinogenic compounds.
The Journal of Lipid Research, 2006
The main player in biliary cholesterol secretion is the heterodimeric transporter complex, ABCG5/... more The main player in biliary cholesterol secretion is the heterodimeric transporter complex, ABCG5/ABCG8, the function of which is necessary for the majority of sterols secreted into bile. It is not clear whether the primary step in this process is flopping of cholesterol from the inner to the outer leaflet of the canalicular membrane, with desorption by mixed micelles, or decreasing of the activation energy required for cholesterol desorption from the outer membrane leaflet. In this study, we investigated these mechanisms by infusing Abcg8 1/1 , Abcg8 1/2 , and Abcg8 2/2 mice with hydrophilic and hydrophobic bile salts. In Abcg8 2/2 mice, this failed to substantially stimulate biliary cholesterol secretion. Infusion of the hydrophobic bile salt taurodeoxycholate also resulted in cholestasis, which was induced in Abcg8 2/2 mice at a much lower infusion rate compared with Abc8 2/2 and Abcg8 1/2 mice, suggesting a reduced cholesterol content in the outer leaflet of the canalicular membrane. Indeed, isolation of canalicular membranes revealed a reduction of 45% in cholesterol content under these conditions in Abcg8 2/2 mice. Our data support the model that ABCG5/ABCG8 primarily play a role in flopping cholesterol (and sterols) from the inner leaflet to the outer leaflet of the canalicular membrane.-K o s t e r s ,A . ,C .K u n n e ,N .L o o i j e ,S .B .P a t e l , R. P. J. Oude Elferink, and A. K. Groen. The mechanism of ABCG5/ABCG8 in biliary cholesterol secretion in mice.
Journal of Hepatology, 2007
Mutations in the ATP8B1 gene can cause Progressive Familial Intrahepatic Cholestasis type 1. We h... more Mutations in the ATP8B1 gene can cause Progressive Familial Intrahepatic Cholestasis type 1. We have previously reported that Atp8b1(G308V/G308V) mice, a model for PFIC1, have slightly, but significantly, higher baseline serum bile salt (BS) concentrations compared to wt mice. Upon BS feeding, serum BS concentrations strongly increased in Atp8b1-deficient mice. Despite these findings, we observed only mildly impaired canalicular BS transport. In the present report we tested the hypothesis that Atp8b1(G308V/G308V) mice hyperabsorb BS in the intestine during BS feeding. Intestinal BS absorption was measured in intestinal perfusion and in intestinal explants. In addition, we measured BS concentrations in portal blood. Ileal expression of the Fxr-targets Asbt, Ilbp and Shp was assessed. In wt and Atp8b1(G308V/G308V) mice, intestinal taurocholate absorption is primarily mediated by the ileal bile salt transporter Asbt. Neither of the experimental systems revealed enhanced absorption of BS in Atp8b1(G308V/G308V) mice compared to wt mice. In line with these observations, we found no difference in the ileal protein expression of Asbt. Induction of Shp expression during BS feeding also demonstrated that Fxr signalling is intact in Atp8b1(G308V/G308V) mice. The accumulation of BS in plasma of Atp8b1(G308V/G308V) mice during BS feeding is not caused by increased intestinal BS absorption.
J Inherit Metab Dis, 2006
Inactivation of prostaglandin E(2) (PGE(2)) in the liver is a rapid process and occurs mainly thr... more Inactivation of prostaglandin E(2) (PGE(2)) in the liver is a rapid process and occurs mainly through beta-oxidation in the peroxisome of the hepatocyte. Biliary excretion of PGE(2) is also a means of elimination from the liver. We investigated the role of multidrug resistance-associated protein 2 (MRP2) in the transport of PGE(2). Biliary PGE(2) elimination was measured in liver perfusions in Wistar and MRP2-deficient TR(-) rats. Furthermore, transport experiments were performed in membrane vesicles from human MRP2-infected Spodoptera frugiperda 21 (Sf21) insect cells. The liver perfusions showed a 3.5 times higher percentage of undegraded [(3)H]PGE(2) in bile of Wistar rats in comparison with MRP2 deficient (TR(-)) rats (3.6% vs. 1.1%, respectively; P<0.05). MRP2-mediated transport of the model substrate [(3)H]DNP-SG was inhibited by PGE(2). Half maximal inhibition was achieved at a concentration of approximately 15 microM PGE(2). In addition, [(3)H]PGE(2) uptake in these vesicles was detected, and determined to be ATP dependent. MRP2 mediates the transport of PGE(2) and its breakdown products. The biliary excretion of PGE(2) via MRP2 may contribute to rapid elimination of the prostaglandin but might also serve to relay prostaglandin signalling to the biliary tree.
J Neurol Neurosurg Psychiat, 2009
Ezetimibe lowers plasma cholesterol levels by inhibiting the uptake of cholesterol in the intesti... more Ezetimibe lowers plasma cholesterol levels by inhibiting the uptake of cholesterol in the intestine. Because of the extensive enterohepatic circulation of ezetimibe, relatively low doses are required to be effective. In blood and bile the majority of ezetimibe is present as a glucuronide conjugate, which is formed in the enterocyte. Presently, it is not clear which mechanisms are responsible for this efficient enterohepatic circulation. Abcc2, Abcc3, and Abcg2 are ATP-binding cassette (ABC) transporters that are expressed in both liver and intestine and are capable of transporting glucuronidated compounds. The aim of this study was to investigate the contribution of these transporters in the enterohepatic cycling of ezetimibe glucuronide (Ez-gluc). Transport studies were performed in plasma membrane vesicles from ABCC2-, ABCC3-, and ABCG2-expressing Sf21 insect cells. Furthermore, intestinal explants from wild-type and Abcc3(-/-) mice were used to study vectorial transport in a Ussing chamber setup. Finally, biliary excretion of Ez-gluc was measured in vivo after duodenal delivery of ezetimibe in wild-type, Abcc3(-/-), Abcc2(-/-), Abcg2(-/-), and Abcg2(-/-)/Abcc2(-/-) mice. ABCC3-, ABCC2-, and ABCG2-mediated transport was dose dependently inhibited by Ez-gluc. In the Ussing chamber Ez-gluc recovered from the basolateral side was significantly reduced in duodenal (2.2%), in jejunal (23%), and in ileal (23%) tissue of Abcc3(-/-) mice compared with that in tissues of wild-type mice. Biliary excretion of Ez-gluc was significantly reduced in Abcc3(-/-) (34%), Abcc2(-/-) (56%), and Abcg2(-/-)/Abcc2(-/-) (2.5%) compared with that in wild-type mice. These data demonstrate that the enterohepatic circulation of Ez-gluc strongly depends on the joint function of Abcc3, Abcc2, and Abcg2.
Peritoneal Dialysis International, Sep 1, 2008
In parietal cells, basolateral Ae2 Cl /HCO 3 exchanger
Atherosclerosis Supplements, 2006
Laboratory investigation; a journal of technical methods and pathology, 2014
Progressive familial intrahepatic cholestasis (PFIC) types 1 and 3 are severe cholestatic liver d... more Progressive familial intrahepatic cholestasis (PFIC) types 1 and 3 are severe cholestatic liver diseases caused by deficiency of ATB8B1 and ABCB4, respectively. Mouse models for PFIC display mild phenotypes compared with human patients, and this can be explained by the difference in bile salt pool composition. Mice, unlike humans, have the ability to detoxify hydrophobic bile salts by cytochrome P450-mediated (re)hydroxylation and thus have a less toxic bile salt pool. We have crossed mouse models for PFIC1 and PFIC3 with Hrn mice that have a reduced capacity to (re)hydroxylate bile salts. Double transgenes were obtained by backcrossing Atp8b1(G308V/G308V) and Abcb4(-/-) mice with Hrn mice that have a liver-specific disruption of the cytochrome P450 reductase gene and therefore have markedly reduced P450 activity. In these mice, a more hydrophobic bile salt pool was instilled by cholic acid supplementation of the diet, and bile formation and liver pathology was studied. As opposed t...
Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis
Conventional lactate-buffered peritoneal dialysis (PD) fluids containing glucose and glucose degr... more Conventional lactate-buffered peritoneal dialysis (PD) fluids containing glucose and glucose degradation products are believed to contribute to the development of fibrosis and angiogenesis in the dialyzed peritoneum. To reduce potential negative effects of lactate, pyruvate was substituted as a buffer and its effects on peritoneal pathological alterations were studied in a chronic peritoneal exposure model in the rat. 20 Wistar rats were infused intraperitoneally with pyruvate-buffered (n = 9) or lactate-buffered PD fluid. After 20 weeks of daily infusion, peritoneal function was assessed. In omental peritoneal tissue, the number of blood vessels was analyzed following alpha-smooth muscle actin staining. The degree of fibrosis was quantitated in Picro Sirius Red-stained sections and by assessment of the hydroxyproline content. Plasma lactate/pyruvate and betahydroxybutyrate/acetoacetate (BBA/AA) ratios were determined. Plasma and dialysate vascular endothelial growth factor (VEGF) l...
Molecular therapy : the journal of the American Society of Gene Therapy, 2006
Crigler-Najjar (CN) patients have no bilirubin UDP glucuronosyltransferase (UGT1A1) activity and ... more Crigler-Najjar (CN) patients have no bilirubin UDP glucuronosyltransferase (UGT1A1) activity and suffer brain damage because of bilirubin toxicity. Vectors based on adeno-associated virus (AAV) serotype 2 transduce liver cells with relatively low efficiency. Recently, AAV serotypes 1, 6, and 8 have been shown to be more efficient for liver cell transduction. We compared AAV serotypes 1, 2, 6, and 8 for correction of UGT1A1 deficiency in the Gunn rat model of CN disease. Adult Gunn rats were injected with CMV-UGT1A1 AAV vectors. Serum bilirubin was decreased over the first year by 64% for AAV1, 16% for AAV2, 25% for AAV6, and 35% for AAV8. Antibodies to UGT1A1 were detected after injection of all AAV serotypes. An AAV1 UGT1A1 vector with the liver-specific albumin promoter corrected serum bilirubin levels but did not induce UGT1A1 antibodies. Two years after injection of AAV vectors all animals had large lipid deposits in the liver. These lipid deposits were not seen in age-matched c...
Atherosclerosis Supplements, 2008
Neuroendocrinology, 2002
We studied the long-term effect of neonatal treatment with the synthetic glucocorticoid dexametha... more We studied the long-term effect of neonatal treatment with the synthetic glucocorticoid dexamethasone (DEX) on stress responsivity later in life. It was found that the plasma adrenocorticotropin hormone (ACTH) and corticosterone (CORT) responses induced by novelty or conditioned fear stress were markedly attenuated in adult rats that had been neonatally treated with DEX as compared with saline (SAL)-treated controls. Since there were no differences in the heart rate, body temperature, plasma noradrenaline, plasma adrenaline and behavioral responses to these stressors, this points to a deficit within the hypothalamic-pituitary-adrenal (HPA) axis of DEX rats. We found no differences between DEX and SAL rats in basal plasma CORT concentrations measured throughout the circadian cycle, nor in the fraction unbound of CORT circulating under resting conditions, indicating normal tonic regulation of the HPA axis in DEX rats. Since we also found no differences in the hormonal responses induced by intravenous injection of graded doses of ACTH or corticotropin-releasing hormone (CRH), we investigated the sensitivity of the HPA response to stress for inhibition by glucocorticoids. Pretreatment with a low dose of CORT that did not affect the HPA response of SAL rats markedly inhibited the ACTH and CORT responses induced by novelty stress in DEX rats. This strongly suggests that an enhanced corticosteroid feedback underlies the blunted HPA response to stress in DEX rats. Finally, using quantitative immunocytochemistry, we found an increase in arginine-vasopressin (AVP) but not CRH stores in the external zone of the median eminence, suggesting an altered AVP/CRH ratio in the secretory output of the hypophysiotropic paraventricular nucleus. Taken together, our results show that exposure to DEX during early life leads to hyporesponsivity of the HPA axis to stress most likely due to hypersensitivity of the axis for negative feedback by corticosteroids at the suprapituitary level.
Molecular Pharmaceutics, 2006
Liver International, 2006
Inactivation of prostaglandin E(2) (PGE(2)) in the liver is a rapid process and occurs mainly thr... more Inactivation of prostaglandin E(2) (PGE(2)) in the liver is a rapid process and occurs mainly through beta-oxidation in the peroxisome of the hepatocyte. Biliary excretion of PGE(2) is also a means of elimination from the liver. We investigated the role of multidrug resistance-associated protein 2 (MRP2) in the transport of PGE(2). Biliary PGE(2) elimination was measured in liver perfusions in Wistar and MRP2-deficient TR(-) rats. Furthermore, transport experiments were performed in membrane vesicles from human MRP2-infected Spodoptera frugiperda 21 (Sf21) insect cells. The liver perfusions showed a 3.5 times higher percentage of undegraded [(3)H]PGE(2) in bile of Wistar rats in comparison with MRP2 deficient (TR(-)) rats (3.6% vs. 1.1%, respectively; P<0.05). MRP2-mediated transport of the model substrate [(3)H]DNP-SG was inhibited by PGE(2). Half maximal inhibition was achieved at a concentration of approximately 15 microM PGE(2). In addition, [(3)H]PGE(2) uptake in these vesicles was detected, and determined to be ATP dependent. MRP2 mediates the transport of PGE(2) and its breakdown products. The biliary excretion of PGE(2) via MRP2 may contribute to rapid elimination of the prostaglandin but might also serve to relay prostaglandin signalling to the biliary tree.
Journal of Pharmacology and Experimental Therapeutics, 2010
Cholyl-L-lysyl-fluorescein (CLF) is a fluorescent bile salt derivative that is being developed as... more Cholyl-L-lysyl-fluorescein (CLF) is a fluorescent bile salt derivative that is being developed as an agent for determining in vivo liver function. However, the mechanisms of uptake and excretion by hepatocytes have not been rigorously studied. We have directly assessed the transport capacity of various hepatobiliary transporters for CLF. Uptake experiments were performed in Chinese hamster ovary cells transfected with human NTCP, OATP1B1, OATP1B3, and OATP2B1. Conversely, excretory systems were tested with plasma membrane vesicles from Sf21 insect cells expressing human ABCB11, ABCC2, ABCC3, and ABCG2. In addition, plasma clearance and biliary excretion of CLF were examined in wild-type, Abcc2(-/-), and Abcc3(-/-) mice. Human Na(+)-dependent taurocholic-cotransporting polypeptide (NTCP) and ATP-binding cassette B11 (ABCB11) were incapable of transporting CLF. In contrast, high-affinity transport of CLF was observed for organic anion-transporting polypeptide 1B3 (OATP1B3), ABCC2, and ABCC3 with K(m) values of 4.6 +/- 2.7, 3.3 +/- 2.0, and 3.7 +/- 1.0 microM, respectively. In Abcc2(-/-) mice biliary excretion of CLF was strongly reduced compared with wild-type mice. This resulted in a much higher hepatic retention of CLF in Abcc2(-/-) versus wild-type mice: 64 versus 1% of the administered dose (2 h after administration). In mice intestinal uptake of CLF was negligible compared with that of taurocholate. Our conclusion is that human NTCP and ABCB11 are incapable of transporting CLF, whereas OATP1B3 and ABCC2/Abcc2 most likely mediate hepatic uptake and biliary excretion of CLF, respectively. CLF can be transported back into the blood by ABCC3. Enterohepatic circulation of CLF is minimal. This renders CLF suitable as an agent for assessing in vivo liver function.
The Journal of Nutritional Biochemistry, 2010
Cafestol and kahweol are diterpene compounds present in unfiltered coffees. Cafestol is known as ... more Cafestol and kahweol are diterpene compounds present in unfiltered coffees. Cafestol is known as the most potent cholesterol-raising agent that may be present in the human diet. Remarkably, the mechanisms behind this effect have only been partly resolved so far. Even less is known about the metabolic fate of cafestol and kahweol. From the structure of cafestol, carrying a furan moiety, we hypothesized that epoxidation may not only be an important biotransformation route but that this also plays a role in its effects found. In bile duct-cannulated mice, dosed with cafestol, we were able to demonstrate the presence of epoxy-glutathione (GSH) conjugates, GSH conjugates and glucuronide conjugates. In addition, it was shown that cafestol was able to induce an electrophile-responsive element (EpRE). Using a murine hepatoma cell line with a luciferase reporter gene under control of an EpRE from the human NQO1 regulatory region, we also found that metabolic activation by CYP450 enzymes is needed for EpRE induction. Furthermore, raising intracellular GSH resulted in a decrease in EpRE-mediated gene induction, whereas lowering intracellular GSH levels increased EpRE-mediated gene induction. In conclusion, evidence suggests that cafestol induces EpRE, apparently via a bioactivation process that possibly involves epoxidation of the furan ring. The epoxides themselves appear subject to conjugation with GSH. The effects on EpRE can also explain the induction of GSH which seems to be involved in the reported beneficial effects of cafestol, for example, when administered with aflatoxin B1 or other toxic or carcinogenic compounds.
The Journal of Lipid Research, 2006
The main player in biliary cholesterol secretion is the heterodimeric transporter complex, ABCG5/... more The main player in biliary cholesterol secretion is the heterodimeric transporter complex, ABCG5/ABCG8, the function of which is necessary for the majority of sterols secreted into bile. It is not clear whether the primary step in this process is flopping of cholesterol from the inner to the outer leaflet of the canalicular membrane, with desorption by mixed micelles, or decreasing of the activation energy required for cholesterol desorption from the outer membrane leaflet. In this study, we investigated these mechanisms by infusing Abcg8 1/1 , Abcg8 1/2 , and Abcg8 2/2 mice with hydrophilic and hydrophobic bile salts. In Abcg8 2/2 mice, this failed to substantially stimulate biliary cholesterol secretion. Infusion of the hydrophobic bile salt taurodeoxycholate also resulted in cholestasis, which was induced in Abcg8 2/2 mice at a much lower infusion rate compared with Abc8 2/2 and Abcg8 1/2 mice, suggesting a reduced cholesterol content in the outer leaflet of the canalicular membrane. Indeed, isolation of canalicular membranes revealed a reduction of 45% in cholesterol content under these conditions in Abcg8 2/2 mice. Our data support the model that ABCG5/ABCG8 primarily play a role in flopping cholesterol (and sterols) from the inner leaflet to the outer leaflet of the canalicular membrane.-K o s t e r s ,A . ,C .K u n n e ,N .L o o i j e ,S .B .P a t e l , R. P. J. Oude Elferink, and A. K. Groen. The mechanism of ABCG5/ABCG8 in biliary cholesterol secretion in mice.
Journal of Hepatology, 2007
Mutations in the ATP8B1 gene can cause Progressive Familial Intrahepatic Cholestasis type 1. We h... more Mutations in the ATP8B1 gene can cause Progressive Familial Intrahepatic Cholestasis type 1. We have previously reported that Atp8b1(G308V/G308V) mice, a model for PFIC1, have slightly, but significantly, higher baseline serum bile salt (BS) concentrations compared to wt mice. Upon BS feeding, serum BS concentrations strongly increased in Atp8b1-deficient mice. Despite these findings, we observed only mildly impaired canalicular BS transport. In the present report we tested the hypothesis that Atp8b1(G308V/G308V) mice hyperabsorb BS in the intestine during BS feeding. Intestinal BS absorption was measured in intestinal perfusion and in intestinal explants. In addition, we measured BS concentrations in portal blood. Ileal expression of the Fxr-targets Asbt, Ilbp and Shp was assessed. In wt and Atp8b1(G308V/G308V) mice, intestinal taurocholate absorption is primarily mediated by the ileal bile salt transporter Asbt. Neither of the experimental systems revealed enhanced absorption of BS in Atp8b1(G308V/G308V) mice compared to wt mice. In line with these observations, we found no difference in the ileal protein expression of Asbt. Induction of Shp expression during BS feeding also demonstrated that Fxr signalling is intact in Atp8b1(G308V/G308V) mice. The accumulation of BS in plasma of Atp8b1(G308V/G308V) mice during BS feeding is not caused by increased intestinal BS absorption.