Cynthia Wooge - Academia.edu (original) (raw)
Papers by Cynthia Wooge
Methods in enzymology, 1987
Breast Cancer Res Treat, 1993
Page 1. Breast Cancer Research and Treatment 27: 17-26, 1993. © 1993 Kluwer Academic Publishers. ... more Page 1. Breast Cancer Research and Treatment 27: 17-26, 1993. © 1993 Kluwer Academic Publishers. Printed in the Netherlands. William L. McGuire Memorial Symposium Estrogen receptors: Ligand discrimination and antiestrogen action ...
The Journal of Steroid Biochemistry and Molecular Biology, 1994
The estrogen receptor (ER) is a hormone-regulated transcription factor which is thought to bind t... more The estrogen receptor (ER) is a hormone-regulated transcription factor which is thought to bind to specific DNA sequences as a homodimer. In order to better understand structural requirements for dimerization and its functional role in ER action, we synthesized a series of bivalent ligands based on the non-steroidal estrogen hexestrol. These molecular probes join two hexestrol molecules of the erythro (E, active) configuration with either 4 or 8 carbon linkers (designated E-4-E and E-8-E series, respectively), or with longer linkers comprised of ethylene glycol units (E-eg-E series). Several other bi- and monovalent control compounds were prepared. The bivalent ligands bind to ER with a relative affinity 1-7% that of estradiol. While most of the ligands demonstrated normal monophasic displacement curves in competitive binding assays with [3H]estradiol, uncharacteristic biphasic competitive binding curves were seen for some of the ligands, indicating possible structure-specific, negative site-site interaction. In ER-deficient Chinese hamster ovary (CHO) cells transfected with an expression vector encoding ER, one series of bivalent ligands (E-4-E) had little stimulatory activity and inhibited transcription stimulated by hexestrol, as determined by a transient transfection assay using an estrogen-responsive reporter gene construct [(ERE)2-TATA-CAT, containing two estrogen response elements linked to a TATA promoter and the chloramphenicol acetyl transferase reporter gene]. Monovalent or control bivalent ligands failed to antagonize hexestrol-stimulated activity and were as fully active as hexestrol itself. Studies performed in MCF-7 human breast cancer cells, which contain endogenous ER, yielded similar bioactivity profiles for the E-4-E bivalent inhibitory ligands, showing them to be effective estrogen antagonists, when using either induction of progesterone receptor or (ERE)2-TATA-CAT transcriptional activation as the endpoint. The E-8-E ligand, however, acted as a partial agonist/antagonist of ERE-reporter gene transactivation and a full agonist of progesterone receptor induction in MCF-7 cells, thus showing cell- and response-specific differences in the effects of this bivalent ligand. These bivalent ligands for ER do not show enhanced potency or receptor binding affinity; however, some of them display binding properties that suggest the possibility of structure-specific negative site-site interaction, and some of them function as quite effective estrogen antagonists.
Molecular and Cellular Endocrinology, 1988
Breast Cancer Research and Treatment, 1993
Page 1. Breast Cancer Research and Treatment 27: 17-26, 1993. © 1993 Kluwer Academic Publishers. ... more Page 1. Breast Cancer Research and Treatment 27: 17-26, 1993. © 1993 Kluwer Academic Publishers. Printed in the Netherlands. William L. McGuire Memorial Symposium Estrogen receptors: Ligand discrimination and antiestrogen action ...
Molecular …, 1997
We have produced in transgenic maize seed the glycoprotein, avidin, which is native to avian, rep... more We have produced in transgenic maize seed the glycoprotein, avidin, which is native to avian, reptilian, and amphibian egg white. A transformant showing high-level expression of avidin was selected. Southern blot data revealed that four copies of the gene are present in this transformant. The foreign protein represents 2% of aqueous soluble extracted protein from populations of dry seed, a level higher than any heterologous protein previously reported for maize. In seed, greater than 55% of the extractable transgenic protein is present in the embryo, an organ representing only 12% of the dry weight of the seed. This indicates that the ubiquitin promoter which is generally considered to be constitutive, in this case may be showing a strong tissue preference in the seed. The mature protein is primarily localized to the intercellular spaces.
Molecular …, 1998
We have generated transgenic maize seed containing β-glucuronidase (GUS) for commercial productio... more We have generated transgenic maize seed containing β-glucuronidase (GUS) for commercial production. While many other investigators have demonstrated the expression of GUS as a scoreable marker, this is one of the first cases where a detailed characterization of the transgenic plants and the protein were performed which are necessary to use this as a commercial source of GUS. The recombinant β-glucuronidase was expressed at levels up to 0.7% of water-soluble protein from populations of dry seed, representing one of the highest levels of heterologous proteins reported for maize. Southern blot analysis revealed that one copy of the gene was present in the transformant with the highest level of expression. In seeds, the majority of recombinant protein was present in the embryo, and subcellular localization indicated that the protein was dispersed throughout the cytoplasm. The purified recombinant β-glucuronidase (GUS) was compared to native β-glucuronidase using SDS-PAGE and western blot analysis. The molecular mass of both the recombinant and native enzymes was 68 000 Da. N-terminal amino acid sequence of the recombinant protein was similar to the sequence predicted from the cloned Escherichia coli gene except that the initial methionine was cleaved from the recombinant GUS. The recombinant and native GUS proteins had isoelectric points (pI) from 4.8 to 5.0. The purified proteins were stable for 30 min at 25, 37, and 50 • C. Kinetic analysis of the recombinant and native GUS enzymes using 4-methylumbelliferyl glucuronide (MUG) as the substrate was performed. Scatchard analysis of these data demonstrated that the recombinant enzyme had a K m of 0.20 mM and a V max of 0.29 mM MUG per hour, and the native enzyme had a K m and V max of 0.21 mM and 0.22 mM/h respectively. Using D-saccharic acid 1,4-lactone, which is an inhibitor of β-glucuronidase, the K i of the native and recombinant enzymes was determined to be 0.13 mM. Thus, these data demonstrate that recombinant GUS is functionally equivalent to native GUS. We have demonstrated the expression of high levels of GUS can be maintained in stable germlines and have used an efficient recovery system where the final protein product, GUS, has been successfully purified. We describe one of the first model systems for the commercial production of a foreign protein which relies on plants as the bioreactor.
Methods in enzymology, 1987
Breast Cancer Res Treat, 1993
Page 1. Breast Cancer Research and Treatment 27: 17-26, 1993. © 1993 Kluwer Academic Publishers. ... more Page 1. Breast Cancer Research and Treatment 27: 17-26, 1993. © 1993 Kluwer Academic Publishers. Printed in the Netherlands. William L. McGuire Memorial Symposium Estrogen receptors: Ligand discrimination and antiestrogen action ...
The Journal of Steroid Biochemistry and Molecular Biology, 1994
The estrogen receptor (ER) is a hormone-regulated transcription factor which is thought to bind t... more The estrogen receptor (ER) is a hormone-regulated transcription factor which is thought to bind to specific DNA sequences as a homodimer. In order to better understand structural requirements for dimerization and its functional role in ER action, we synthesized a series of bivalent ligands based on the non-steroidal estrogen hexestrol. These molecular probes join two hexestrol molecules of the erythro (E, active) configuration with either 4 or 8 carbon linkers (designated E-4-E and E-8-E series, respectively), or with longer linkers comprised of ethylene glycol units (E-eg-E series). Several other bi- and monovalent control compounds were prepared. The bivalent ligands bind to ER with a relative affinity 1-7% that of estradiol. While most of the ligands demonstrated normal monophasic displacement curves in competitive binding assays with [3H]estradiol, uncharacteristic biphasic competitive binding curves were seen for some of the ligands, indicating possible structure-specific, negative site-site interaction. In ER-deficient Chinese hamster ovary (CHO) cells transfected with an expression vector encoding ER, one series of bivalent ligands (E-4-E) had little stimulatory activity and inhibited transcription stimulated by hexestrol, as determined by a transient transfection assay using an estrogen-responsive reporter gene construct [(ERE)2-TATA-CAT, containing two estrogen response elements linked to a TATA promoter and the chloramphenicol acetyl transferase reporter gene]. Monovalent or control bivalent ligands failed to antagonize hexestrol-stimulated activity and were as fully active as hexestrol itself. Studies performed in MCF-7 human breast cancer cells, which contain endogenous ER, yielded similar bioactivity profiles for the E-4-E bivalent inhibitory ligands, showing them to be effective estrogen antagonists, when using either induction of progesterone receptor or (ERE)2-TATA-CAT transcriptional activation as the endpoint. The E-8-E ligand, however, acted as a partial agonist/antagonist of ERE-reporter gene transactivation and a full agonist of progesterone receptor induction in MCF-7 cells, thus showing cell- and response-specific differences in the effects of this bivalent ligand. These bivalent ligands for ER do not show enhanced potency or receptor binding affinity; however, some of them display binding properties that suggest the possibility of structure-specific negative site-site interaction, and some of them function as quite effective estrogen antagonists.
Molecular and Cellular Endocrinology, 1988
Breast Cancer Research and Treatment, 1993
Page 1. Breast Cancer Research and Treatment 27: 17-26, 1993. © 1993 Kluwer Academic Publishers. ... more Page 1. Breast Cancer Research and Treatment 27: 17-26, 1993. © 1993 Kluwer Academic Publishers. Printed in the Netherlands. William L. McGuire Memorial Symposium Estrogen receptors: Ligand discrimination and antiestrogen action ...
Molecular …, 1997
We have produced in transgenic maize seed the glycoprotein, avidin, which is native to avian, rep... more We have produced in transgenic maize seed the glycoprotein, avidin, which is native to avian, reptilian, and amphibian egg white. A transformant showing high-level expression of avidin was selected. Southern blot data revealed that four copies of the gene are present in this transformant. The foreign protein represents 2% of aqueous soluble extracted protein from populations of dry seed, a level higher than any heterologous protein previously reported for maize. In seed, greater than 55% of the extractable transgenic protein is present in the embryo, an organ representing only 12% of the dry weight of the seed. This indicates that the ubiquitin promoter which is generally considered to be constitutive, in this case may be showing a strong tissue preference in the seed. The mature protein is primarily localized to the intercellular spaces.
Molecular …, 1998
We have generated transgenic maize seed containing β-glucuronidase (GUS) for commercial productio... more We have generated transgenic maize seed containing β-glucuronidase (GUS) for commercial production. While many other investigators have demonstrated the expression of GUS as a scoreable marker, this is one of the first cases where a detailed characterization of the transgenic plants and the protein were performed which are necessary to use this as a commercial source of GUS. The recombinant β-glucuronidase was expressed at levels up to 0.7% of water-soluble protein from populations of dry seed, representing one of the highest levels of heterologous proteins reported for maize. Southern blot analysis revealed that one copy of the gene was present in the transformant with the highest level of expression. In seeds, the majority of recombinant protein was present in the embryo, and subcellular localization indicated that the protein was dispersed throughout the cytoplasm. The purified recombinant β-glucuronidase (GUS) was compared to native β-glucuronidase using SDS-PAGE and western blot analysis. The molecular mass of both the recombinant and native enzymes was 68 000 Da. N-terminal amino acid sequence of the recombinant protein was similar to the sequence predicted from the cloned Escherichia coli gene except that the initial methionine was cleaved from the recombinant GUS. The recombinant and native GUS proteins had isoelectric points (pI) from 4.8 to 5.0. The purified proteins were stable for 30 min at 25, 37, and 50 • C. Kinetic analysis of the recombinant and native GUS enzymes using 4-methylumbelliferyl glucuronide (MUG) as the substrate was performed. Scatchard analysis of these data demonstrated that the recombinant enzyme had a K m of 0.20 mM and a V max of 0.29 mM MUG per hour, and the native enzyme had a K m and V max of 0.21 mM and 0.22 mM/h respectively. Using D-saccharic acid 1,4-lactone, which is an inhibitor of β-glucuronidase, the K i of the native and recombinant enzymes was determined to be 0.13 mM. Thus, these data demonstrate that recombinant GUS is functionally equivalent to native GUS. We have demonstrated the expression of high levels of GUS can be maintained in stable germlines and have used an efficient recovery system where the final protein product, GUS, has been successfully purified. We describe one of the first model systems for the commercial production of a foreign protein which relies on plants as the bioreactor.