Daniel Graf - Academia.edu (original) (raw)
Papers by Daniel Graf
The Journal of Immunology, Apr 1, 2009
Bone Morphogenetic Proteins: From Local to Systemic Therapeutics, 2008
Bone morphogenetic proteins (BMPs) encompass a large subgroup of evolutionary conserved, secreted... more Bone morphogenetic proteins (BMPs) encompass a large subgroup of evolutionary conserved, secreted signaling molecules belonging to the TGF-β superfamily. In contrast to that suggested by their name, BMP function is not restricted to the skeleton. Recent ...
FEBS letters, Jan 15, 2015
While osteo- and chondro-inductive activities of recombinant human bone morphogenetic protein 7 a... more While osteo- and chondro-inductive activities of recombinant human bone morphogenetic protein 7 are well established, evaluation of the role of endogenous BMP7 in skeletal homeostasis has been hampered by perinatal lethality in BMP7 knockout mice. Here, we examined physiological roles of endogenous BMP7 in joint homeostasis and showed that proteoglycan contents in articular cartilage were significantly reduced in the absence of BMP7. Loss of BMP7 did not affect survival of articular cartilage cells, but resulted in reduced expression of aggrecan and enhanced expression of matrix metalloproteinase 13. We also found extensive synovial hyperplasia and enhanced expression of Activin A. These findings suggest that locally produced BMP7 is prerequisite for postnatal synovial joint homeostasis and may be involved in osteoarthritic changes in adults.
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 17, 2013
To understand life-long neurogenesis in the dentate gyrus (DG), characterizing dentate neural ste... more To understand life-long neurogenesis in the dentate gyrus (DG), characterizing dentate neural stem cells and the signals controlling their development are crucial. In the present study, we show that bone morphogenic protein (Bmp) signaling is a critical regulator of embryonic dentate development, required for initiating neurogenesis in embryonic DG progenitors and required for the establishment of dentate neural stem cells postnatally. We tested the hypothesis that Bmp signaling regulates dentate development in part by controlling the expression of Lef1, a Wnt responsive transcription factor expressed in dentate stem cells and absolutely required for dentate granule cell production. Bmp activation through the Acvr1 receptor induced Lef1 expression and neurogenesis in the embryonic DG. Ectopic expression of Bmp7 in the embryonic midline increased DG neurogenesis and inhibition of local Bmp signaling decreased embryonic DG neurogenesis. Mice with selective loss of Bmp expression due t...
Schweizer Monatsschrift für Zahnmedizin = Revue mensuelle suisse d'odonto-stomatologie = Rivista mensile svizzera di odontologia e stomatologia / SSO, 2011
The embryonic head development, including the formation of dental structures, is a complex and de... more The embryonic head development, including the formation of dental structures, is a complex and delicate process guided by specific genetic programs. Genetic changes and environmental factors can disturb the execution of these programs and result in abnormalities in orofacial and dental structures. Orofacial clefts and hypodontia/ oligodontia are examples of such abnormalities frequently seen in dental clinics. An insight into the mechanisms and genes involved in the formation of orofacial and dental structures has been gradually gained by genetic analysis of families and by the use of experimental vertebrate models such as the mouse and chick models. The development of novel clinical therapies for orofacial and dental pathological conditions depends very much on a detailed knowledge of the molecular and cellular processes that are involved in head formation.
Nature genetics, 1999
The human insulin-resistance syndromes, type 2 diabetes, obesity, combined hyperlipidaemia and es... more The human insulin-resistance syndromes, type 2 diabetes, obesity, combined hyperlipidaemia and essential hypertension, are complex disorders whose genetic basis is unknown. The spontaneously hypertensive rat (SHR) is insulin resistant and a model of these human syndromes. Quantitative trait loci (QTLs) for SHR defects in glucose and fatty acid metabolism, hypertriglyceridaemia and hypertension map to a single locus on rat chromosome 4. Here we combine use of cDNA microarrays, congenic mapping and radiation hybrid (RH) mapping to identify a defective SHR gene, Cd36 (also known as Fat, as it encodes fatty acid translocase), at the peak of linkage to these QTLs. SHR Cd36 cDNA contains multiple sequence variants, caused by unequal genomic recombination of a duplicated ancestral gene. The encoded protein product is undetectable in SHR adipocyte plasma membrane. Transgenic mice overexpressing Cd36 have reduced blood lipids. We conclude that Cd36 deficiency underlies insulin resistance, de...
The CD40 ligand (CD40L) is a molecule expressed by activated T cells which plays a critical role ... more The CD40 ligand (CD40L) is a molecule expressed by activated T cells which plays a critical role in the regulation of B-cell responses, including differentiation into Ig-producing cells. Using the specific monoclonal antibody TRAP1 we have evaluated the ontogeny of CD40L ...
Wiley Interdisciplinary Reviews: Developmental Biology, 2014
Holoprosencephaly (HPE) is the most common developmental defect of the forebrain characterized by... more Holoprosencephaly (HPE) is the most common developmental defect of the forebrain characterized by inadequate or absent midline division of the forebrain into cerebral hemispheres, with concomitant midline facial defects in the majority of cases. Understanding the pathogenesis of HPE requires knowledge of the relationship between the developing brain and the facial structures during embryogenesis. A number of signaling pathways control and coordinate the development of the brain and face, including Sonic hedgehog, Bone morphogenetic protein, Fibroblast growth factor, and Nodal signaling. Mutations in these pathways have been identified in animal models of HPE and human patients. Because of incomplete penetrance and variable expressivity of HPE, patients carrying defined mutations may not manifest the disease at all, or have a spectrum of defects. It is currently unknown what drives manifestation of HPE in genetically at-risk individuals, but it has been speculated that other gene mutations and environmental factors may combine as cumulative insults. HPE can be diagnosed in utero by a high-resolution prenatal ultrasound or a fetal magnetic resonance imaging, sometimes in combination with molecular testing from chorionic villi or amniotic fluid sampling. Currently, there are no effective preventive methods for HPE. Better understanding of the mechanisms of gene-environment interactions in HPE would provide avenues for such interventions.
Frontiers in Physiology, 2012
Cleft palate is a common birth defect in humans. Elevation and fusion of paired palatal shelves a... more Cleft palate is a common birth defect in humans. Elevation and fusion of paired palatal shelves are coordinated by growth and transcription factors, and mutations in these can cause malformations. Among the effector genes for growth factor signaling are extracellular matrix (ECM) glycoproteins. These provide substrates for cell adhesion (e.g., fibronectin, tenascins), but also regulate growth factor availability (e.g., fibrillins). Cleft palate in Bmp7 null mouse embryos is caused by a delay in palatal shelf elevation. In contrast, palatal shelves of Tgf-β3 knockout mice elevate normally, but a cleft develops due to their failure to fuse. However, nothing is known about a possible functional interaction between specific ECM proteins and Tgf-β/Bmp family members in palatogenesis. To start addressing this question, we studied the mRNA and protein distribution of relevant ECM components during secondary palate development, and compared it to growth factor expression in wildtypewild type and mutant mice. We found that fibrillin-2 (but not fibrillin-1) mRNA appeared in the mesenchyme of elevated palatal shelves adjacent to the midline epithelial cells, which were positive for Tgf-β3 mRNA. Moreover, midline epithelial cells started expressing fibronectin upon contact of the two palatal shelves. These findings support the hypothesis that fibrillin-2 and fibronectin are involved in regulating the activity of Tgf-β3 at the fusing midline. In addition, we observed that tenascin-W (but not tenascin-C) was misexpressed in palatal shelves of Bmp7-deficient mouse embryos. In contrast to tenascin-C, tenascin-W secretion was strongly induced by Bmp7 in embryonic cranial fibroblasts in vitro. These results are consistent with a putative function for tenascin-W as a target of Bmp7 signaling during palate elevation. Our results indicate that distinct ECM proteins are important for morphogenesis of the secondary palate, both as downstream effectors and as regulators of Tgf-β/Bmp activity.
Nature, 1993
X chromosome-linked immunodeficiency with hyper-IgM (HIGM1, MIM number 308230) is a rare disorder... more X chromosome-linked immunodeficiency with hyper-IgM (HIGM1, MIM number 308230) is a rare disorder characterized by recurrent bacterial infections, very low or absent IgG, IgA and IgE, and normal to increased IgM and IgD serum levels. HIGM1 has been suggested to result from ineffective T-cell help for B cells. We and others have identified a novel, TNF-related activation protein (TRAP) that is exclusively expressed on the surface of stimulated T cells. TRAP, a type II transmembrane protein of M(r) 33,000, is the physiological ligand for CD40 (refs 5-8). Crosslinking of CD40 on B cells induces, in the presence of lymphokines, immunoglobulin class switching from IgM to IgG, IgA or IgE. Mapping of the TRAP gene to the X-chromosomal location q26.3-q27.1 (ref. 6) suggested a causal relationship to HIGM1, which had previously been assigned to Xq26 (refs 12-14). Here we present evidence that point mutations in the TRAP gene give rise to nonfunctional or defective expression of TRAP on the surface of T cells in patients with HIGM1. The resultant failure of TRAP to interact with CD40 on functionally intact B cells is responsible for the observed immunoglobulin isotype defect in HIGM1.
PLoS ONE, 2012
Sirenomelia, also known as mermaid syndrome, is a developmental malformation of the caudal body c... more Sirenomelia, also known as mermaid syndrome, is a developmental malformation of the caudal body characterized by leg fusion and associated anomalies of pelvic/urogenital organs including bladder, kidney, rectum and external genitalia. Most affected infants are stillborn, and the few born alive rarely survive beyond the neonatal period. Despite the many clinical studies of sirenomelia in humans, little is known about the pathogenic developmental mechanisms that cause the complex array of phenotypes observed. Here, we provide new evidences that reduced BMP (Bone Morphogenetic Protein) signaling disrupts caudal body formation in mice and phenocopies sirenomelia. Bmp4 is strongly expressed in the developing caudal body structures including the peri-cloacal region and hindlimb field. In order to address the function of Bmp4 in caudal body formation, we utilized a conditional Bmp4 mouse allele (Bmp4(flox/flox)) and the Isl1 (Islet1)-Cre mouse line. Isl1-Cre is expressed in the peri-cloacal region and the developing hindimb field. Isl1Cre;Bmp4(flox/flox) conditional mutant mice displayed sirenomelia phenotypes including hindlimb fusion and pelvic/urogenital organ dysgenesis. Genetic lineage analyses indicate that Isl1-expressing cells contribute to both the aPCM (anterior Peri-Cloacal Mesenchyme) and the hindlimb bud. We show Bmp4 is essential for the aPCM formation independently with Shh signaling. Furthermore, we show Bmp4 is a major BMP ligand for caudal body formation as shown by compound genetic analyses of Bmp4 and Bmp7. Taken together, this study reveals coordinated development of caudal body structures including pelvic/urogenital organs and hindlimb orchestrated by BMP signaling in Isl1-expressing cells. Our study offers new insights into the pathogenesis of sirenomelia.
PLoS ONE, 2014
Podocyte injury is the first step in the progression of glomerulosclerosis. Previous studies have... more Podocyte injury is the first step in the progression of glomerulosclerosis. Previous studies have demonstrated the beneficial effect of bone morphogenetic protein 7 (Bmp7) in podocyte injury and the existence of native Bmp signaling in podocytes. Local activity of Bmp7 is controlled by cell-type specific Bmp antagonists, which inhibit the binding of Bmp7 to its receptors. Here we show that the product of Twisted gastrulation (Twsg1), a Bmp antagonist, is the central negative regulator of Bmp function in podocytes and that Twsg1 null mice are resistant to podocyte injury. Twsg1 was the most abundant Bmp antagonist in murine cultured podocytes. The administration of Bmp induced podocyte differentiation through Smad signaling, whereas the simultaneous administration of Twsg1 antagonized the effect. The administration of Bmp also inhibited podocyte proliferation, whereas simultaneous administration of Twsg1 antagonized the effect. Twsg1 was expressed in the glomerular parietal cells (PECs) and distal nephron of the healthy kidney, and additionally in damaged glomerular cells in a murine model of podocyte injury. Twsg1 null mice exhibited milder hypoalbuminemia and hyperlipidemia, and milder histological changes while maintaining the expression of podocyte markers during podocyte injury model. Taken together, our results show that Twsg1 plays a critical role in the modulation of protective action of Bmp7 on podocytes, and that inhibition of Twsg1 is a promising means of development of novel treatment for podocyte injury.
PLoS ONE, 2012
Morphogenesis of the secondary palate in mammalian embryos involves two major events: first, reor... more Morphogenesis of the secondary palate in mammalian embryos involves two major events: first, reorientation of the two vertically oriented palatal shelves into a horizontal position above the tongue, and second, fusion of the two shelves at the midline. Genetic evidence in humans and mice indicates the involvement of matrix metalloproteinases (MMPs). As MMP expression patterns might differ from sites of activity, we used a recently developed highly sensitive in situ zymography technique to map gelatinolytic MMP activity in the developing mouse palate. At embryonic day 14.5 (E14.5), we detected strong gelatinolytic activity around the lateral epithelial folds of the nasopharyngeal cavity, which is generated as a consequence of palatal shelf elevation. Activity was concentrated in the basement membrane of the epithelial fold but extended into the adjacent mesenchyme, and increased in intensity with lateral outgrowth of the cavity at E15.5. Gelatinolytic activity at this site was not the consequence of epithelial fold formation, as it was also observed in Bmp7deficient embryos where shelf elevation is delayed. In this case, gelatinolytic activity appeared in vertical shelves at the exact position where the epithelial fold will form during elevation. Mmp2 and Mmp14 (MT1-MMP), but not Mmp9 and Mmp13, mRNAs were expressed in the mesenchyme around the epithelial folds of the elevated palatal shelves; this was confirmed by immunostaining for MMP-2 and MT1-MMP. Weak gelatinolytic activity was also found at the midline of E14.5 palatal shelves, which increased during fusion at E15.5. Whereas MMPs have been implicated in palatal fusion before, this is the first report showing that gelatinases might contribute to tissue remodeling during early stages of palatal shelf elevation and formation of the nasopharynx.
Osteoarthritis and Cartilage, 2014
Journal of the American Society of Nephrology, 2008
Individuals with congenital renal hypoplasia display a defect in the growth of nephrons during de... more Individuals with congenital renal hypoplasia display a defect in the growth of nephrons during development. Many genes that affect the initial induction of nephrons have been identified, but little is known about the regulation of postinductive stages of kidney development. In the absence of the growth factor bone morphogenic protein 7 (BMP7), kidney development arrests after induction of a small number of nephrons. The role of BMP7 after induction, however, has not been fully investigated. Here, we generated a podocyte-specific conditional knockout of BMP7 (Bmp7(flox/flox);Nphs2-Cre(+) [BMP7 CKO]) to study the role of podocyte-derived BMP7 in nephron maturation. By postnatal day 4, 65% of BMP7 CKO mice had hypoplastic kidneys, but glomeruli demonstrated normal patterns of laminin and collagen IV subunit expression. Developing proximal tubules, however, were reduced in number and demonstrated impaired cellular proliferation. We examined signaling pathways downstream of BMP7; the level of cortical phosphorylated Smad1, 5, and 8 was unchanged in BMP CKO kidneys, but phosphorylated p38 mitogen-activated protein kinase was significantly decreased. In addition, beta-catenin was reduced in BMP7 CKO kidneys, and its localization to intracellular vesicles suggested that it had been targeted for degradation. In summary, these results define a BMP7-mediated regulatory axis between glomeruli and proximal tubules during kidney development.
Journal of Orthopaedic Research, 2009
While the osteoinductive activity of recombinant bone morphogenetic protein 7 (BMP7) is well esta... more While the osteoinductive activity of recombinant bone morphogenetic protein 7 (BMP7) is well established, evaluation of the role of endogenous BMP7 in bone formation and fracture healing has been hampered by perinatal lethality in BMP7 knockout mice. Here we employ conditional deletion of BMP7 from the embryonic limb prior to the onset of skeletogenesis to create limb bones lacking BMP7. We find that the absence of locally produced BMP7 has no effect on postnatal limb growth, articular cartilage formation, maintenance of bone mass, or fracture healing. Our data suggest that other BMPs present in adult bone are sufficient to compensate for the absence of BMP7.
The Journal of Immunology, 2010
The costimulatory molecules in the B7-CD28 families are important in the regulation of T cell act... more The costimulatory molecules in the B7-CD28 families are important in the regulation of T cell activation and tolerance. The butyrophilin family of proteins shares sequence and structure homology with B7 family molecules; however, the function of the butyrophilin family in the immune system has not been defined. In this study, we performed an analysis on multiple butyrophilin molecules and found that butyrophilin-like (BTNL)1 molecule functions to dampen T cell activation. BTNL1 mRNA was broadly expressed, but its protein was only found in APCs and not T cells. The putative receptor for BTNL1 was found on activated T cells and APCs. Also, recombinant BTNL1 molecule inhibited T cell proliferation by arresting cell cycle progression. The administration of neutralizing Abs against BTNL1 provoked enhanced T cell activation and exacerbated disease in autoimmune and asthma mouse models. Therefore, BTNL1 is a critical inhibitory molecule for T cell activation and immune diseases.
Journal of Experimental Medicine, 2013
Here we demonstrated that these LC niches express high levels of bone morphogenetic protein 7 (BM... more Here we demonstrated that these LC niches express high levels of bone morphogenetic protein 7 (BMP7) and that Bmp7-deficient mice exhibit substantially diminished LC numbers, with the remaining cells appearing less dendritic. BMP7 induces LC differentiation and proliferation by activating the BMP type-I receptor ALK3 in the absence of canonical TGF-1-ALK5 signaling. Conversely, TGF-1-induced in vitro LC differentiation is mediated via ALK3; however, co-induction of ALK5 diminished TGF-1-driven LC generation. Therefore, selective ALK3 signaling by BMP7 promotes high LC yields. Within epidermis, BMP7 shows an inverse expression pattern relative to TGF-1, the latter induced in suprabasal layers and up-regulated in outer layers. We observed that TGF-1 inhibits microbial activation of BMP7-generated LCs. Therefore, TGF-1 in suprabasal/outer epidermal layers might inhibit LC activation, resulting in LC network maintenance.
Immunology Letters, 1996
The CD40 ligand (CD40L) is a molecule expressed by activated T cells which plays a critical role ... more The CD40 ligand (CD40L) is a molecule expressed by activated T cells which plays a critical role in the regulation of B-cell responses, including differentiation into Ig-producing cells. Using the specific monoclonal antibody TRAP1 we have evaluated the ontogeny of CD40L ...
The Journal of Immunology, Apr 1, 2009
Bone Morphogenetic Proteins: From Local to Systemic Therapeutics, 2008
Bone morphogenetic proteins (BMPs) encompass a large subgroup of evolutionary conserved, secreted... more Bone morphogenetic proteins (BMPs) encompass a large subgroup of evolutionary conserved, secreted signaling molecules belonging to the TGF-β superfamily. In contrast to that suggested by their name, BMP function is not restricted to the skeleton. Recent ...
FEBS letters, Jan 15, 2015
While osteo- and chondro-inductive activities of recombinant human bone morphogenetic protein 7 a... more While osteo- and chondro-inductive activities of recombinant human bone morphogenetic protein 7 are well established, evaluation of the role of endogenous BMP7 in skeletal homeostasis has been hampered by perinatal lethality in BMP7 knockout mice. Here, we examined physiological roles of endogenous BMP7 in joint homeostasis and showed that proteoglycan contents in articular cartilage were significantly reduced in the absence of BMP7. Loss of BMP7 did not affect survival of articular cartilage cells, but resulted in reduced expression of aggrecan and enhanced expression of matrix metalloproteinase 13. We also found extensive synovial hyperplasia and enhanced expression of Activin A. These findings suggest that locally produced BMP7 is prerequisite for postnatal synovial joint homeostasis and may be involved in osteoarthritic changes in adults.
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 17, 2013
To understand life-long neurogenesis in the dentate gyrus (DG), characterizing dentate neural ste... more To understand life-long neurogenesis in the dentate gyrus (DG), characterizing dentate neural stem cells and the signals controlling their development are crucial. In the present study, we show that bone morphogenic protein (Bmp) signaling is a critical regulator of embryonic dentate development, required for initiating neurogenesis in embryonic DG progenitors and required for the establishment of dentate neural stem cells postnatally. We tested the hypothesis that Bmp signaling regulates dentate development in part by controlling the expression of Lef1, a Wnt responsive transcription factor expressed in dentate stem cells and absolutely required for dentate granule cell production. Bmp activation through the Acvr1 receptor induced Lef1 expression and neurogenesis in the embryonic DG. Ectopic expression of Bmp7 in the embryonic midline increased DG neurogenesis and inhibition of local Bmp signaling decreased embryonic DG neurogenesis. Mice with selective loss of Bmp expression due t...
Schweizer Monatsschrift für Zahnmedizin = Revue mensuelle suisse d'odonto-stomatologie = Rivista mensile svizzera di odontologia e stomatologia / SSO, 2011
The embryonic head development, including the formation of dental structures, is a complex and de... more The embryonic head development, including the formation of dental structures, is a complex and delicate process guided by specific genetic programs. Genetic changes and environmental factors can disturb the execution of these programs and result in abnormalities in orofacial and dental structures. Orofacial clefts and hypodontia/ oligodontia are examples of such abnormalities frequently seen in dental clinics. An insight into the mechanisms and genes involved in the formation of orofacial and dental structures has been gradually gained by genetic analysis of families and by the use of experimental vertebrate models such as the mouse and chick models. The development of novel clinical therapies for orofacial and dental pathological conditions depends very much on a detailed knowledge of the molecular and cellular processes that are involved in head formation.
Nature genetics, 1999
The human insulin-resistance syndromes, type 2 diabetes, obesity, combined hyperlipidaemia and es... more The human insulin-resistance syndromes, type 2 diabetes, obesity, combined hyperlipidaemia and essential hypertension, are complex disorders whose genetic basis is unknown. The spontaneously hypertensive rat (SHR) is insulin resistant and a model of these human syndromes. Quantitative trait loci (QTLs) for SHR defects in glucose and fatty acid metabolism, hypertriglyceridaemia and hypertension map to a single locus on rat chromosome 4. Here we combine use of cDNA microarrays, congenic mapping and radiation hybrid (RH) mapping to identify a defective SHR gene, Cd36 (also known as Fat, as it encodes fatty acid translocase), at the peak of linkage to these QTLs. SHR Cd36 cDNA contains multiple sequence variants, caused by unequal genomic recombination of a duplicated ancestral gene. The encoded protein product is undetectable in SHR adipocyte plasma membrane. Transgenic mice overexpressing Cd36 have reduced blood lipids. We conclude that Cd36 deficiency underlies insulin resistance, de...
The CD40 ligand (CD40L) is a molecule expressed by activated T cells which plays a critical role ... more The CD40 ligand (CD40L) is a molecule expressed by activated T cells which plays a critical role in the regulation of B-cell responses, including differentiation into Ig-producing cells. Using the specific monoclonal antibody TRAP1 we have evaluated the ontogeny of CD40L ...
Wiley Interdisciplinary Reviews: Developmental Biology, 2014
Holoprosencephaly (HPE) is the most common developmental defect of the forebrain characterized by... more Holoprosencephaly (HPE) is the most common developmental defect of the forebrain characterized by inadequate or absent midline division of the forebrain into cerebral hemispheres, with concomitant midline facial defects in the majority of cases. Understanding the pathogenesis of HPE requires knowledge of the relationship between the developing brain and the facial structures during embryogenesis. A number of signaling pathways control and coordinate the development of the brain and face, including Sonic hedgehog, Bone morphogenetic protein, Fibroblast growth factor, and Nodal signaling. Mutations in these pathways have been identified in animal models of HPE and human patients. Because of incomplete penetrance and variable expressivity of HPE, patients carrying defined mutations may not manifest the disease at all, or have a spectrum of defects. It is currently unknown what drives manifestation of HPE in genetically at-risk individuals, but it has been speculated that other gene mutations and environmental factors may combine as cumulative insults. HPE can be diagnosed in utero by a high-resolution prenatal ultrasound or a fetal magnetic resonance imaging, sometimes in combination with molecular testing from chorionic villi or amniotic fluid sampling. Currently, there are no effective preventive methods for HPE. Better understanding of the mechanisms of gene-environment interactions in HPE would provide avenues for such interventions.
Frontiers in Physiology, 2012
Cleft palate is a common birth defect in humans. Elevation and fusion of paired palatal shelves a... more Cleft palate is a common birth defect in humans. Elevation and fusion of paired palatal shelves are coordinated by growth and transcription factors, and mutations in these can cause malformations. Among the effector genes for growth factor signaling are extracellular matrix (ECM) glycoproteins. These provide substrates for cell adhesion (e.g., fibronectin, tenascins), but also regulate growth factor availability (e.g., fibrillins). Cleft palate in Bmp7 null mouse embryos is caused by a delay in palatal shelf elevation. In contrast, palatal shelves of Tgf-β3 knockout mice elevate normally, but a cleft develops due to their failure to fuse. However, nothing is known about a possible functional interaction between specific ECM proteins and Tgf-β/Bmp family members in palatogenesis. To start addressing this question, we studied the mRNA and protein distribution of relevant ECM components during secondary palate development, and compared it to growth factor expression in wildtypewild type and mutant mice. We found that fibrillin-2 (but not fibrillin-1) mRNA appeared in the mesenchyme of elevated palatal shelves adjacent to the midline epithelial cells, which were positive for Tgf-β3 mRNA. Moreover, midline epithelial cells started expressing fibronectin upon contact of the two palatal shelves. These findings support the hypothesis that fibrillin-2 and fibronectin are involved in regulating the activity of Tgf-β3 at the fusing midline. In addition, we observed that tenascin-W (but not tenascin-C) was misexpressed in palatal shelves of Bmp7-deficient mouse embryos. In contrast to tenascin-C, tenascin-W secretion was strongly induced by Bmp7 in embryonic cranial fibroblasts in vitro. These results are consistent with a putative function for tenascin-W as a target of Bmp7 signaling during palate elevation. Our results indicate that distinct ECM proteins are important for morphogenesis of the secondary palate, both as downstream effectors and as regulators of Tgf-β/Bmp activity.
Nature, 1993
X chromosome-linked immunodeficiency with hyper-IgM (HIGM1, MIM number 308230) is a rare disorder... more X chromosome-linked immunodeficiency with hyper-IgM (HIGM1, MIM number 308230) is a rare disorder characterized by recurrent bacterial infections, very low or absent IgG, IgA and IgE, and normal to increased IgM and IgD serum levels. HIGM1 has been suggested to result from ineffective T-cell help for B cells. We and others have identified a novel, TNF-related activation protein (TRAP) that is exclusively expressed on the surface of stimulated T cells. TRAP, a type II transmembrane protein of M(r) 33,000, is the physiological ligand for CD40 (refs 5-8). Crosslinking of CD40 on B cells induces, in the presence of lymphokines, immunoglobulin class switching from IgM to IgG, IgA or IgE. Mapping of the TRAP gene to the X-chromosomal location q26.3-q27.1 (ref. 6) suggested a causal relationship to HIGM1, which had previously been assigned to Xq26 (refs 12-14). Here we present evidence that point mutations in the TRAP gene give rise to nonfunctional or defective expression of TRAP on the surface of T cells in patients with HIGM1. The resultant failure of TRAP to interact with CD40 on functionally intact B cells is responsible for the observed immunoglobulin isotype defect in HIGM1.
PLoS ONE, 2012
Sirenomelia, also known as mermaid syndrome, is a developmental malformation of the caudal body c... more Sirenomelia, also known as mermaid syndrome, is a developmental malformation of the caudal body characterized by leg fusion and associated anomalies of pelvic/urogenital organs including bladder, kidney, rectum and external genitalia. Most affected infants are stillborn, and the few born alive rarely survive beyond the neonatal period. Despite the many clinical studies of sirenomelia in humans, little is known about the pathogenic developmental mechanisms that cause the complex array of phenotypes observed. Here, we provide new evidences that reduced BMP (Bone Morphogenetic Protein) signaling disrupts caudal body formation in mice and phenocopies sirenomelia. Bmp4 is strongly expressed in the developing caudal body structures including the peri-cloacal region and hindlimb field. In order to address the function of Bmp4 in caudal body formation, we utilized a conditional Bmp4 mouse allele (Bmp4(flox/flox)) and the Isl1 (Islet1)-Cre mouse line. Isl1-Cre is expressed in the peri-cloacal region and the developing hindimb field. Isl1Cre;Bmp4(flox/flox) conditional mutant mice displayed sirenomelia phenotypes including hindlimb fusion and pelvic/urogenital organ dysgenesis. Genetic lineage analyses indicate that Isl1-expressing cells contribute to both the aPCM (anterior Peri-Cloacal Mesenchyme) and the hindlimb bud. We show Bmp4 is essential for the aPCM formation independently with Shh signaling. Furthermore, we show Bmp4 is a major BMP ligand for caudal body formation as shown by compound genetic analyses of Bmp4 and Bmp7. Taken together, this study reveals coordinated development of caudal body structures including pelvic/urogenital organs and hindlimb orchestrated by BMP signaling in Isl1-expressing cells. Our study offers new insights into the pathogenesis of sirenomelia.
PLoS ONE, 2014
Podocyte injury is the first step in the progression of glomerulosclerosis. Previous studies have... more Podocyte injury is the first step in the progression of glomerulosclerosis. Previous studies have demonstrated the beneficial effect of bone morphogenetic protein 7 (Bmp7) in podocyte injury and the existence of native Bmp signaling in podocytes. Local activity of Bmp7 is controlled by cell-type specific Bmp antagonists, which inhibit the binding of Bmp7 to its receptors. Here we show that the product of Twisted gastrulation (Twsg1), a Bmp antagonist, is the central negative regulator of Bmp function in podocytes and that Twsg1 null mice are resistant to podocyte injury. Twsg1 was the most abundant Bmp antagonist in murine cultured podocytes. The administration of Bmp induced podocyte differentiation through Smad signaling, whereas the simultaneous administration of Twsg1 antagonized the effect. The administration of Bmp also inhibited podocyte proliferation, whereas simultaneous administration of Twsg1 antagonized the effect. Twsg1 was expressed in the glomerular parietal cells (PECs) and distal nephron of the healthy kidney, and additionally in damaged glomerular cells in a murine model of podocyte injury. Twsg1 null mice exhibited milder hypoalbuminemia and hyperlipidemia, and milder histological changes while maintaining the expression of podocyte markers during podocyte injury model. Taken together, our results show that Twsg1 plays a critical role in the modulation of protective action of Bmp7 on podocytes, and that inhibition of Twsg1 is a promising means of development of novel treatment for podocyte injury.
PLoS ONE, 2012
Morphogenesis of the secondary palate in mammalian embryos involves two major events: first, reor... more Morphogenesis of the secondary palate in mammalian embryos involves two major events: first, reorientation of the two vertically oriented palatal shelves into a horizontal position above the tongue, and second, fusion of the two shelves at the midline. Genetic evidence in humans and mice indicates the involvement of matrix metalloproteinases (MMPs). As MMP expression patterns might differ from sites of activity, we used a recently developed highly sensitive in situ zymography technique to map gelatinolytic MMP activity in the developing mouse palate. At embryonic day 14.5 (E14.5), we detected strong gelatinolytic activity around the lateral epithelial folds of the nasopharyngeal cavity, which is generated as a consequence of palatal shelf elevation. Activity was concentrated in the basement membrane of the epithelial fold but extended into the adjacent mesenchyme, and increased in intensity with lateral outgrowth of the cavity at E15.5. Gelatinolytic activity at this site was not the consequence of epithelial fold formation, as it was also observed in Bmp7deficient embryos where shelf elevation is delayed. In this case, gelatinolytic activity appeared in vertical shelves at the exact position where the epithelial fold will form during elevation. Mmp2 and Mmp14 (MT1-MMP), but not Mmp9 and Mmp13, mRNAs were expressed in the mesenchyme around the epithelial folds of the elevated palatal shelves; this was confirmed by immunostaining for MMP-2 and MT1-MMP. Weak gelatinolytic activity was also found at the midline of E14.5 palatal shelves, which increased during fusion at E15.5. Whereas MMPs have been implicated in palatal fusion before, this is the first report showing that gelatinases might contribute to tissue remodeling during early stages of palatal shelf elevation and formation of the nasopharynx.
Osteoarthritis and Cartilage, 2014
Journal of the American Society of Nephrology, 2008
Individuals with congenital renal hypoplasia display a defect in the growth of nephrons during de... more Individuals with congenital renal hypoplasia display a defect in the growth of nephrons during development. Many genes that affect the initial induction of nephrons have been identified, but little is known about the regulation of postinductive stages of kidney development. In the absence of the growth factor bone morphogenic protein 7 (BMP7), kidney development arrests after induction of a small number of nephrons. The role of BMP7 after induction, however, has not been fully investigated. Here, we generated a podocyte-specific conditional knockout of BMP7 (Bmp7(flox/flox);Nphs2-Cre(+) [BMP7 CKO]) to study the role of podocyte-derived BMP7 in nephron maturation. By postnatal day 4, 65% of BMP7 CKO mice had hypoplastic kidneys, but glomeruli demonstrated normal patterns of laminin and collagen IV subunit expression. Developing proximal tubules, however, were reduced in number and demonstrated impaired cellular proliferation. We examined signaling pathways downstream of BMP7; the level of cortical phosphorylated Smad1, 5, and 8 was unchanged in BMP CKO kidneys, but phosphorylated p38 mitogen-activated protein kinase was significantly decreased. In addition, beta-catenin was reduced in BMP7 CKO kidneys, and its localization to intracellular vesicles suggested that it had been targeted for degradation. In summary, these results define a BMP7-mediated regulatory axis between glomeruli and proximal tubules during kidney development.
Journal of Orthopaedic Research, 2009
While the osteoinductive activity of recombinant bone morphogenetic protein 7 (BMP7) is well esta... more While the osteoinductive activity of recombinant bone morphogenetic protein 7 (BMP7) is well established, evaluation of the role of endogenous BMP7 in bone formation and fracture healing has been hampered by perinatal lethality in BMP7 knockout mice. Here we employ conditional deletion of BMP7 from the embryonic limb prior to the onset of skeletogenesis to create limb bones lacking BMP7. We find that the absence of locally produced BMP7 has no effect on postnatal limb growth, articular cartilage formation, maintenance of bone mass, or fracture healing. Our data suggest that other BMPs present in adult bone are sufficient to compensate for the absence of BMP7.
The Journal of Immunology, 2010
The costimulatory molecules in the B7-CD28 families are important in the regulation of T cell act... more The costimulatory molecules in the B7-CD28 families are important in the regulation of T cell activation and tolerance. The butyrophilin family of proteins shares sequence and structure homology with B7 family molecules; however, the function of the butyrophilin family in the immune system has not been defined. In this study, we performed an analysis on multiple butyrophilin molecules and found that butyrophilin-like (BTNL)1 molecule functions to dampen T cell activation. BTNL1 mRNA was broadly expressed, but its protein was only found in APCs and not T cells. The putative receptor for BTNL1 was found on activated T cells and APCs. Also, recombinant BTNL1 molecule inhibited T cell proliferation by arresting cell cycle progression. The administration of neutralizing Abs against BTNL1 provoked enhanced T cell activation and exacerbated disease in autoimmune and asthma mouse models. Therefore, BTNL1 is a critical inhibitory molecule for T cell activation and immune diseases.
Journal of Experimental Medicine, 2013
Here we demonstrated that these LC niches express high levels of bone morphogenetic protein 7 (BM... more Here we demonstrated that these LC niches express high levels of bone morphogenetic protein 7 (BMP7) and that Bmp7-deficient mice exhibit substantially diminished LC numbers, with the remaining cells appearing less dendritic. BMP7 induces LC differentiation and proliferation by activating the BMP type-I receptor ALK3 in the absence of canonical TGF-1-ALK5 signaling. Conversely, TGF-1-induced in vitro LC differentiation is mediated via ALK3; however, co-induction of ALK5 diminished TGF-1-driven LC generation. Therefore, selective ALK3 signaling by BMP7 promotes high LC yields. Within epidermis, BMP7 shows an inverse expression pattern relative to TGF-1, the latter induced in suprabasal layers and up-regulated in outer layers. We observed that TGF-1 inhibits microbial activation of BMP7-generated LCs. Therefore, TGF-1 in suprabasal/outer epidermal layers might inhibit LC activation, resulting in LC network maintenance.
Immunology Letters, 1996
The CD40 ligand (CD40L) is a molecule expressed by activated T cells which plays a critical role ... more The CD40 ligand (CD40L) is a molecule expressed by activated T cells which plays a critical role in the regulation of B-cell responses, including differentiation into Ig-producing cells. Using the specific monoclonal antibody TRAP1 we have evaluated the ontogeny of CD40L ...