J. Bridgham - Academia.edu (original) (raw)

Related Authors

Siğnem  ONEY

Nasit IGCI

John Sutton

Linda T Kaastra

Michael Burns

Peter Uetz

Guillaume Jacques

Guillaume Jacques

Centre National de la Recherche Scientifique / French National Centre for Scientific Research

Juan J.  Morrone

James M Carpenter

Viacheslav Kuleshov

Uploads

Papers by J. Bridgham

Research paper thumbnail of The FET4 gene encodes the low aPnity Fe(II) transport protein of Saccharomyces cerevisiae

Research paper thumbnail of Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module

Cell, Jan 25, 2014

Complex gene regulatory networks require transcription factors (TFs) to bind distinct DNA sequenc... more Complex gene regulatory networks require transcription factors (TFs) to bind distinct DNA sequences. To understand how novel TF specificity evolves, we combined phylogenetic, biochemical, and biophysical approaches to interrogate how DNA recognition diversified in the steroid hormone receptor (SR) family. After duplication of the ancestral SR, three mutations in one copy radically weakened binding to the ancestral estrogen response element (ERE) and improved binding to a new set of DNA sequences (steroid response elements, SREs). They did so by establishing unfavorable interactions with ERE and abolishing unfavorable interactions with SRE; also required were numerous permissive substitutions, which nonspecifically improved cooperativity and affinity of DNA binding. Our findings indicate that negative determinants of binding play key roles in TFs' DNA selectivity and-with our prior work on the evolution of SR ligand specificity during the same interval-show how a specific new gen...

Research paper thumbnail of Characterization of the FET4 Protein of Yeast. EVIDENCE FOR A DIRECT ROLE IN THE TRANSPORT OF IRON

Journal of Biological Chemistry, 1997

The low affinity Fe2+ uptake system of Saccharomyces cerevisiae requires the FET4 gene. In this r... more The low affinity Fe2+ uptake system of Saccharomyces cerevisiae requires the FET4 gene. In this report, we present evidence that FET4 encodes the Fe2+ transporter protein of this system. Antibodies prepared against FET4 detected two distinct proteins with molecular masses of 63 and 68 kDa. In vitro synthesis of FET4 suggested that the 68-kDa form is the primary translation product, and the 63-kDa form may be generated by proteolytic cleavage of the full-length protein. Consistent with its role as an Fe2+ transporter, FET4 is an integral membrane protein present in the plasma membrane. The level of FET4 closely correlated with uptake activity over a broad range of expression levels and is itself regulated by iron. Furthermore, mutations in FET4 can alter the kinetic properties of the low affinity uptake system, suggesting a direct interaction between FET4 and its Fe2+ substrate. Mutations affecting potential Fe2+ ligands located in the predicted transmembrane domains of FET4 significantly altered the apparent Km and/or Vmax of the low affinity system. These mutations may identify residues involved in Fe2+ binding during transport.

Research paper thumbnail of Protein Evolution by Molecular Tinkering: Diversification of the Nuclear Receptor Superfamily from a Ligand-Dependent Ancestor

Understanding how protein structures and functions have diversified is a central goal in molecula... more Understanding how protein structures and functions have diversified is a central goal in molecular evolution. Surveys of very divergent proteins from model organisms, however, are often insufficient to determine the features of ancestral proteins and to reveal the evolutionary events that yielded extant diversity. Here we combine genomic, biochemical, functional, structural, and phylogenetic analyses to reconstruct the early evolution of nuclear receptors (NRs), a diverse superfamily of transcriptional regulators that play key roles in animal development, physiology, and reproduction. By inferring the structure and functions of the ancestral NR, we show-contrary to current belief-that NRs evolved from a ligand-activated ancestral receptor that existed near the base of the Metazoa, with fatty acids as possible ancestral ligands. Evolutionary tinkering with this ancestral structure generated the extraordinary diversity of modern receptors: sensitivity to different ligands evolved because of subtle modifications of the internal cavity, and ligand-independent activation evolved repeatedly because of various mutations that stabilized the active conformation in the absence of ligand. Our findings illustrate how a mechanistic dissection of protein evolution in a phylogenetic context can reveal the deep homology that links apparently ''novel'' molecular functions to a common ancestral form.

Research paper thumbnail of The FET4 gene encodes the low aPnity Fe(II) transport protein of Saccharomyces cerevisiae

Research paper thumbnail of Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module

Cell, Jan 25, 2014

Complex gene regulatory networks require transcription factors (TFs) to bind distinct DNA sequenc... more Complex gene regulatory networks require transcription factors (TFs) to bind distinct DNA sequences. To understand how novel TF specificity evolves, we combined phylogenetic, biochemical, and biophysical approaches to interrogate how DNA recognition diversified in the steroid hormone receptor (SR) family. After duplication of the ancestral SR, three mutations in one copy radically weakened binding to the ancestral estrogen response element (ERE) and improved binding to a new set of DNA sequences (steroid response elements, SREs). They did so by establishing unfavorable interactions with ERE and abolishing unfavorable interactions with SRE; also required were numerous permissive substitutions, which nonspecifically improved cooperativity and affinity of DNA binding. Our findings indicate that negative determinants of binding play key roles in TFs' DNA selectivity and-with our prior work on the evolution of SR ligand specificity during the same interval-show how a specific new gen...

Research paper thumbnail of Characterization of the FET4 Protein of Yeast. EVIDENCE FOR A DIRECT ROLE IN THE TRANSPORT OF IRON

Journal of Biological Chemistry, 1997

The low affinity Fe2+ uptake system of Saccharomyces cerevisiae requires the FET4 gene. In this r... more The low affinity Fe2+ uptake system of Saccharomyces cerevisiae requires the FET4 gene. In this report, we present evidence that FET4 encodes the Fe2+ transporter protein of this system. Antibodies prepared against FET4 detected two distinct proteins with molecular masses of 63 and 68 kDa. In vitro synthesis of FET4 suggested that the 68-kDa form is the primary translation product, and the 63-kDa form may be generated by proteolytic cleavage of the full-length protein. Consistent with its role as an Fe2+ transporter, FET4 is an integral membrane protein present in the plasma membrane. The level of FET4 closely correlated with uptake activity over a broad range of expression levels and is itself regulated by iron. Furthermore, mutations in FET4 can alter the kinetic properties of the low affinity uptake system, suggesting a direct interaction between FET4 and its Fe2+ substrate. Mutations affecting potential Fe2+ ligands located in the predicted transmembrane domains of FET4 significantly altered the apparent Km and/or Vmax of the low affinity system. These mutations may identify residues involved in Fe2+ binding during transport.

Research paper thumbnail of Protein Evolution by Molecular Tinkering: Diversification of the Nuclear Receptor Superfamily from a Ligand-Dependent Ancestor

Understanding how protein structures and functions have diversified is a central goal in molecula... more Understanding how protein structures and functions have diversified is a central goal in molecular evolution. Surveys of very divergent proteins from model organisms, however, are often insufficient to determine the features of ancestral proteins and to reveal the evolutionary events that yielded extant diversity. Here we combine genomic, biochemical, functional, structural, and phylogenetic analyses to reconstruct the early evolution of nuclear receptors (NRs), a diverse superfamily of transcriptional regulators that play key roles in animal development, physiology, and reproduction. By inferring the structure and functions of the ancestral NR, we show-contrary to current belief-that NRs evolved from a ligand-activated ancestral receptor that existed near the base of the Metazoa, with fatty acids as possible ancestral ligands. Evolutionary tinkering with this ancestral structure generated the extraordinary diversity of modern receptors: sensitivity to different ligands evolved because of subtle modifications of the internal cavity, and ligand-independent activation evolved repeatedly because of various mutations that stabilized the active conformation in the absence of ligand. Our findings illustrate how a mechanistic dissection of protein evolution in a phylogenetic context can reveal the deep homology that links apparently ''novel'' molecular functions to a common ancestral form.

Log In