Kyron Jacobs - Academia.edu (original) (raw)
Related Authors
CSIC (Consejo Superior de Investigaciones Científicas-Spanish National Research Council)
Uploads
Papers by Kyron Jacobs
Physical Review D, 1996
Recently a bound on negative energy densities in four-dimensional Minkowski spacetime was derived... more Recently a bound on negative energy densities in four-dimensional Minkowski spacetime was derived for a minimally coupled, quantized, massless, scalar field in an arbitrary quantum state. The bound has the form of an uncertainty principle-type constraint on the magnitude and duration of the negative energy density seen by a timelike geodesic observer. When spacetime is curved and/or has boundaries, we argue that the bound should hold in regions small compared to the minimum local characteristic radius of curvature or the distance to any boundaries, since spacetime can be considered approximately Minkowski on these scales. We apply the bound to the stress-energy of static traversable wormhole spacetimes. Our analysis implies that either the wormhole must be only a little larger than Planck size or that there is a large discrepancy in the length scales which characterize the wormhole. In the latter case, the negative energy must typically be concentrated in a thin band many orders of magnitude smaller than the throat size. These results would seem to make the existence of macroscopic traversable wormholes very improbable.
Journal of High Energy Physics, 2011
We use the avoidance of the trans-Planckian problem of Hawking radiation as a guiding principle i... more We use the avoidance of the trans-Planckian problem of Hawking radiation as a guiding principle in searching for a compelling scenario for the evaporation of black holes or black-hole-like objects. We argue that there exist only three possible scenarios, depending on whether the classical notion of long-lived horizon is preserved by high-energy physics and on whether the dark and compact astrophysical objects that we observe have long-lived horizons in the first place. Along the way, we find that i) a theory with high-energy superluminal signalling and a long-lived trapping horizon would be extremely unstable in astrophysical terms and that ii) stellar pulsations of objects hovering right outside but extremely close to their gravitational radius can result in a mechanism for Hawking-like emission.
Recently a bound on negativeenergy densities in four-dimensional Minkowski spacetime was derived ... more Recently a bound on negativeenergy densities in four-dimensional Minkowski spacetime was derived for a minimally coupled, quantized, massless, scalar field in an arbitrary quantum state. The bound has the form of an uncertainty principle-type constraint on the magnitude and duration of the negative energy density seen by a timelike geodesic observer. When spacetime is curved and/or has boundaries, we argue that the bound should hold in regions small compared to the minimum local characteristic radius of curvature or the distance to any boundaries, since spacetime can be considered approximately Minkowski on these scales. We apply the bound to 1 1 Permanent address;
Physical Review D, 1996
Recently a bound on negative energy densities in four-dimensional Minkowski spacetime was derived... more Recently a bound on negative energy densities in four-dimensional Minkowski spacetime was derived for a minimally coupled, quantized, massless, scalar field in an arbitrary quantum state. The bound has the form of an uncertainty principle-type constraint on the magnitude and duration of the negative energy density seen by a timelike geodesic observer. When spacetime is curved and/or has boundaries, we argue that the bound should hold in regions small compared to the minimum local characteristic radius of curvature or the distance to any boundaries, since spacetime can be considered approximately Minkowski on these scales. We apply the bound to the stress-energy of static traversable wormhole spacetimes. Our analysis implies that either the wormhole must be only a little larger than Planck size or that there is a large discrepancy in the length scales which characterize the wormhole. In the latter case, the negative energy must typically be concentrated in a thin band many orders of magnitude smaller than the throat size. These results would seem to make the existence of macroscopic traversable wormholes very improbable.
Journal of High Energy Physics, 2011
We use the avoidance of the trans-Planckian problem of Hawking radiation as a guiding principle i... more We use the avoidance of the trans-Planckian problem of Hawking radiation as a guiding principle in searching for a compelling scenario for the evaporation of black holes or black-hole-like objects. We argue that there exist only three possible scenarios, depending on whether the classical notion of long-lived horizon is preserved by high-energy physics and on whether the dark and compact astrophysical objects that we observe have long-lived horizons in the first place. Along the way, we find that i) a theory with high-energy superluminal signalling and a long-lived trapping horizon would be extremely unstable in astrophysical terms and that ii) stellar pulsations of objects hovering right outside but extremely close to their gravitational radius can result in a mechanism for Hawking-like emission.
Recently a bound on negativeenergy densities in four-dimensional Minkowski spacetime was derived ... more Recently a bound on negativeenergy densities in four-dimensional Minkowski spacetime was derived for a minimally coupled, quantized, massless, scalar field in an arbitrary quantum state. The bound has the form of an uncertainty principle-type constraint on the magnitude and duration of the negative energy density seen by a timelike geodesic observer. When spacetime is curved and/or has boundaries, we argue that the bound should hold in regions small compared to the minimum local characteristic radius of curvature or the distance to any boundaries, since spacetime can be considered approximately Minkowski on these scales. We apply the bound to 1 1 Permanent address;