Lavinia Lotti - Academia.edu (original) (raw)
Papers by Lavinia Lotti
1 Killing of Kras mutant colon cancer cells via Rac-independent actin remodeling by the βGBP cyto... more 1 Killing of Kras mutant colon cancer cells via Rac-independent actin remodeling by the βGBP cytokine a physiological PI3K inhibitor therapeutically effective in vivo
PLOS Pathogens, 2020
SAMHD1 is a host restriction factor that functions to restrict both retroviruses and DNA viruses,... more SAMHD1 is a host restriction factor that functions to restrict both retroviruses and DNA viruses, based on its nuclear deoxynucleotide triphosphate (dNTP) hydrolase activity that limits availability of intracellular dNTP pools. In the present study, we demonstrate that SAMHD1 expression was increased following human cytomegalovirus (HCMV) infection, with only a modest effect on infectious virus production. SAMHD1 was rapidly phosphorylated at residue T592 after infection by cellular cyclin-dependent kinases, especially Cdk2, and by the viral kinase pUL97, resulting in a significant fraction of phosho-SAMHD1 being relocalized to the cytoplasm of infected fibroblasts, in association with viral particles and dense bodies. Thus, our findings indicate that HCMV-dependent SAMHD1 cytoplasmic delocalization and inactivation may represent a potential novel mechanism of HCMV evasion from host antiviral restriction activities.
British Journal of Cancer, 2019
Background Current approaches aimed at inducing immunogenic cell death (ICD) to incite an immune ... more Background Current approaches aimed at inducing immunogenic cell death (ICD) to incite an immune response against cancer neoantigens are based on the use of chemotherapeutics and other agents. Results are hampered by issues of efficacy, combinatorial approaches, dosing and toxicity. Here, we adopted a strategy based on the use of an immunomolecule that overcomes pharmachemical limitations. Methods Cytofluorometry, electron microscopy, RT-PCR, western blotting, apotome immunofluorescence, MLR and xenografts. Results We report that an ICD process can be activated without the use of pharmacological compounds. We show that in Kras-mut/TP53-mut colorectal cancer cells the 15 kDa βGBP cytokine, a T cell effector with onco-suppressor properties and a potential role in cancer immunosurveillance, induces key canonical events required for ICD induction. We document ER stress, autophagy that extends from cancer cells to the corresponding xenograft tumours, CRT cell surface shifting, ATP releas...
Acta neuropathologica, 2018
Tumours can be viewed as aberrant tissues or organs sustained by tumorigenic stem-like cells that... more Tumours can be viewed as aberrant tissues or organs sustained by tumorigenic stem-like cells that engage into dysregulated histo/organogenetic processes. Paragangliomas, prototypical organoid tumours constituted by dysmorphic variants of the vascular and neural tissues found in normal paraganglia, provide a model to test this hypothesis. To understand the origin of paragangliomas, we built a biobank comprising 77 cases, 18 primary cultures, 4 derived cell lines, 80 patient-derived xenografts and 11 cell-derived xenografts. We comparatively investigated these unique complementary materials using morphofunctional, ultrastructural and flow cytometric assays accompanied by microRNA studies. We found that paragangliomas contain stem-like cells with hybrid mesenchymal/vasculoneural phenotype, stabilized and expanded in the derived cultures. The viability and growth of such cultures depended on the downregulation of the miR-200 and miR-34 families, which allowed high PDGFRA and ZEB1 protei...
Journal of Cell Biology, 1992
We performed an immunocytochemical analysis to study the transfer of a marker protein (G glycopro... more We performed an immunocytochemical analysis to study the transfer of a marker protein (G glycoprotein coded by vesicular stomatitis virus ts 045 strain) from the intermediate compartment to the Golgi stacks in infected Vero cells. The intermediate compartment seemed to consist of about 30-40 separate units of clustered small vesicles and short tubules. The units contained Rab2 protein and were spread throughout the cytoplasm, with a ratio of about 6:4 in the peripheral versus perinuclear site. Time-course experiments revealed a progressive transfer of G glycoprotein from the intermediate compartment to the Golgi stacks, while the tubulo-vesicular units did not appear to change their intracellular distribution. Moreover, the labeling density of peripheral and perinuclear units decreased in parallel during the transfer. These results support the notion that the intermediate compartment is a station in the secretory pathway, and that a vesicular transport connects this station to the G...
Molecular and Cellular Biology, 1996
The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelect... more The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane and endocytic structures, such as coated pits and endosomes, and with the peripheral cytosol. Receptor activation in cells expressing phosphorylation-defective mutants of Shc and erbB-2 kinase showed that receptor autophosphorylation, but not Shc phosphorylation, is required for redistribution of Shc proteins. The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and...
Molecular Biology of the Cell, 1999
Interleukin 1β (IL-1β), a secretory protein lacking a signal peptide, does not follow the classic... more Interleukin 1β (IL-1β), a secretory protein lacking a signal peptide, does not follow the classical endoplasmic reticulum-to-Golgi pathway of secretion. Here we provide the evidence for a “leaderless” secretory route that uses regulated exocytosis of preterminal endocytic vesicles to transport cytosolic IL-1β out of the cell. Indeed, although most of the IL-1β precursor (proIL-1β) localizes in the cytosol of activated human monocytes, a fraction is contained within vesicles that cofractionate with late endosomes and early lysosomes on Percoll density gradients and display ultrastructural features and markers typical of these organelles. The observation of organelles positive for both IL-1β and the endolysosomal hydrolase cathepsin D or for both IL-1β and the lysosomal marker Lamp-1 further suggests that they belong to the preterminal endocytic compartment. In addition, similarly to lysosomal hydrolases, secretion of IL-1β is induced by acidotropic drugs. Treatment of monocytes with ...
Journal of virology, 2014
Autophagy is a catabolic pathway that helps cells to survive under stressful conditions. Cells al... more Autophagy is a catabolic pathway that helps cells to survive under stressful conditions. Cells also use autophagy to clear microbiological infections, but microbes have learned how to manipulate the autophagic pathway for their own benefit. The experimental evidence obtained in this study suggests that the autophagic flux is blocked at the final steps during the reactivation of Epstein-Barr virus (EBV) from latency. This is indicated by the level of the lipidated form of LC3 that does not increase in the presence of bafilomycin and by the lack of colocalization of autophagosomes with lysosomes, which correlates with reduced Rab7 expression. Since the inhibition of the early phases of autophagy impaired EBV replication and viral particles were observed in autophagic vesicles in the cytoplasm of producing cells, we suggest that EBV exploits the autophagic machinery for its transportation in order to enhance viral production. The autophagic block was not mediated by ZEBRA, an immediate...
Autophagy, 2008
as an ultrastructural marker of heavy metal toxicity in human cord blood hematopoietic stem cells.
Journal of Immunology Research, 2014
There is concern about the possible toxicity of palladium nanoparticles (Pd-NP), as they are rele... more There is concern about the possible toxicity of palladium nanoparticles (Pd-NP), as they are released in the environment through many applications. We previously studied the toxicity of Pd-NP at high concentrations; here we address the possible toxicity of Pd-NP at low, subtoxic doses. In particular, we have exposed normal human PBMC entering into the first in vitro mitotic division to Pd-NP and to Pd(IV) ions to evaluate ROS generation and cell cycle progression. We have measured a statistically significant increase of intracellular ROS in Pd(IV) exposed cells, but not in Pd-NP exposed cells. TEM revealed accumulation of lipid droplets and autophagic and mitophagic vacuoles, which appeared more conspicuous in cells exposed to Pd(IV) ions than to Pd-NP. Pd-NP were visible in the cytoplasm of Pd-NP exposed cells. Pd-NP addition was associated with a significant increase of cells within the G0/G1-phase and a significant reduction in GS- and G2/M-phases. Cells exposed to Pd(IV) ions sh...
PLoS ONE, 2013
Understanding the mechanisms of autophagy induction and its role during chemotherapeutic treatmen... more Understanding the mechanisms of autophagy induction and its role during chemotherapeutic treatments is of fundamental importance in order to manipulate it to improve the outcome of chemotherapy. In particular whether the bortezomibinduced autophagy plays a pro-survival or pro-death role is still controversial. In this study we investigated if bortezomib induced endoplasmic reticulum (ER) stress and activated autophagy in Primary Effusion Lymphoma (PEL) cells and how they influenced cell survival. We found that bortezomib induced up-regulation of the pro-survival and pro-death ER stress molecules BIP and CHOP and activated c-Jun NH2-terminal kinase (JNK), resulting in Bcl-2 phosphorylation and induction of autophagy. JNK and autophagy activation played a pro-survival role in this setting, thus their inhibition increased the bortezomib cytotoxic effect and PARP cleavage in PEL cells. Based on our results we suggest that the combination of bortezomib with JNK or autophagy inhibitors could be exploited to improve the outcome of therapy of this aggressive B cell lymphoma.
British Journal of Clinical Pharmacology, 2014
The aim of the study was to investigate whether human megakaryocytic cells have an adaptive respo... more The aim of the study was to investigate whether human megakaryocytic cells have an adaptive response to aspirin treatment, leading to an enhancement of multidrug resistance protein-4 (MRP4) expression in circulating platelets responsible for a reduced aspirin action. We recently found that platelet MRP4 overexpression has a role in reducing aspirin action in patients after bypass surgery. Aspirin enhances MRP4-mRNA levels in rat liver and drug administration transcriptionally regulates MRP4 gene expression through peroxisome proliferator-activated receptor-α (PPARα). METHODS The effects induced by aspirin or PPARα agonist (WY14643) on MRP4 modulation were evaluated in vitro in a human megakaryoblastic DAMI cell line, in megakaryocytes (MKs) and in platelets obtained from human haematopoietic progenitor cell (HPC) cultures, and in vivo platelets obtained from aspirin treated healthy volunteers (HV). RESULTS In DAMI cells, aspirin and WY14643 treatment induced a significant increase in MRP4 and PPARα expression. In human MKs grown in the presence of either aspirin or WY14643, MRP4 and PPARα-mRNA were higher than in control cultures and derived platelets showed an enhancement in MRP4 protein expression. The ability of aspirin to modulate MRP4 expression in MKs and to transfer it to platelets was also confirmed in vivo. In fact, we found the highest MRP4 mRNA and protein expression in platelets obtained from HV after 15 days' aspirin treatment. CONCLUSIONS The present study provides evidence, for the first time, that aspirin treatment affects the platelet protein pattern through MK genomic modulation. This work represents an innovative and attractive approach, useful both to identify patients less sensitive to aspirin and to improve pharmacological treatment in cardiovascular high-risk patients. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Aspirin treatment reduces cardiovascular complication in high risk patients. • Less aspirin inhibition of platelet function, for a residual thromboxane formation, is independently associated with an increased risk of cardiovascular events. • Platelet multidrug resistance protein-4 (MRP4) overexpression is a new mechanism of suboptimal platelet inhibition by aspirin in patients who have undergone recent CABG surgery. WHAT THIS STUDY ADDS • Aspirin induces changes in megakaryocytes gene expression leading to MRP4 protein up-regulation in human platelets. • The nuclear receptor, peroxisome proliferator-activated receptor-α (PPARα) is involved in aspirin dependent MRP4 overexpression.
Virology, 1999
A peculiar characteristic of cells infected with human herpesvirus 6 (HHV6) is the absence of vir... more A peculiar characteristic of cells infected with human herpesvirus 6 (HHV6) is the absence of viral glycoproteins on the plasma membrane, which may reflect an atypical intracellular transport of the virions and/or the viral glycoproteins, different from that of the other members of the herpesvirus family. To investigate the maturation pathway of HHV-6 in the human T lymphoid cell line HSB-2, we used lectin cytochemistry and immunogold labeling combined with several electron microscopical techniques, such as ultrathin frozen sections, postembedding, and fracture-label. Immunolabeling with anti-gp116 and anti-gp82-gp105 monoclonal antibodies revealed that the viral glycoproteins are undetectable on nuclear membranes and that at the inner nuclear membrane nucleocapsids acquire a primary envelope lacking viral glycoproteins. After de-envelopment, cytoplasmic nucleocapsids acquire a thick tegument and a secondary envelope with viral glycoproteins at the level of neo-formed annulate lamellae or at the cis-side of the Golgi complex. Cytochemical labeling using helix pomatia lectin revealed that the newly acquired secondary viral envelopes contain intermediate forms of glycocomponents, suggesting a sequential glycosylation of the virions during their transit through the Golgi area before their final release into the extracellular space. Immunogold labeling also showed that the viral glycoproteins, which are not involved in the budding process, reach and accumulate in the endosomal/lysosomal compartment. Pulse-chase analysis indicated degradation of the gp116, consistent with its endosomal localization and with the absence of viral glycoproteins on the cell surface of the infected cells.
Virology, 2001
The intracellular localization of hepatitis C virus structural proteins was analyzed by confocal ... more The intracellular localization of hepatitis C virus structural proteins was analyzed by confocal immunofluorescence microscopy, cell fractionation, and immunoelectron microscopy in stably transfected cells that do not overexpress the viral proteins. The results strongly suggest that at steady state the structural proteins reside not only in the endoplasmic reticulum but also in the intermediate compartment and cis-Golgi complex region. By analogy with other viral systems, this finding raises the possibility that the intermediate compartment and cis-Golgi complex play a role in the assembly and budding of hepatitis C virus.
The Journal of Cell Biology, 1987
Sindbis virus-infected baby hamster kidney (BHK) cells were analyzed by thin section fracture-lab... more Sindbis virus-infected baby hamster kidney (BHK) cells were analyzed by thin section fracture-label. Specific immunolabel with antiviral glycoprotein antibodies was used in conjunction with colloidal gold-conjugated protein A. As we previously reported (Torrisi, M. R., and S. Bonatti, 1985, J. Cell Biol., 101:1300-1306), Sindbis transmembrane glycoproteins are present in the inner nuclear membrane as well as in the outer nuclear membrane, endoplasmic reticulum, Golgi stacks and vesicles, and plasma membranes. Viral glycoproteins located on the inner nuclear membrane resemble those present on the outer membrane in terms of amount, distribution, and preferential partition after fracture. We show in this paper that Sindbis glycoproteins after treatment with cycloheximide are removed from the inner nuclear membrane with the same kinetics as their counterparts present on the outer membrane. This finding strongly suggests that newly synthesized transmembrane glycoproteins may freely diffu...
Proceedings of the National Academy of Sciences, 1996
An increasingly large number of proteins involved in signal transduction have been identified in ... more An increasingly large number of proteins involved in signal transduction have been identified in recent years and shown to control different steps of cell survival, proliferation, and differentiation. Among the genes recently identified at the tip of the long arm of the human X chromosome, a novel gene, C1, encodes a protein that appears to represent a newly discovered member of the group of signaling proteins involved in regulation of the small GTP binding proteins of the ras superfamily. The protein encoded by C1, p115, is synthesized predominantly in cells of hematopoietic origin. It is characterized by two regions of similarity to motifs present in known proteins: GAP and SH3 homologous regions. Its localization in a narrow cytoplasmic region just below the plasma membrane and its inhibitory effect on stress fiber organization indicate that p115 may down regulate rho-like GTPases in hematopoietic cells.
PLoS ONE, 2011
We describe here two novel endogenous variants of the human endoplasmic reticulum (ER) cargo rece... more We describe here two novel endogenous variants of the human endoplasmic reticulum (ER) cargo receptor SEL1LA, designated p38 and p28. Biochemical and RNA interference studies in tumorigenic and non-tumorigenic cells indicate that p38 and p28 are N-terminal, ER-anchorless and more stable relative to the canonical transmembrane SEL1LA. P38 is expressed and constitutively secreted, with increase after ER stress, in the KMS11 myeloma line and in the breast cancer lines MCF7 and SKBr3, but not in the non-tumorigenic breast epithelial MCF10A line. P28 is detected only in the poorly differentiated SKBr3 cell line, where it is secreted after ER stress. Consistently with the presence of p38 and p28 in culture media, morphological studies of SKBr3 and KMS11 cells detect N-terminal SEL1L immunolabeling in secretory/degradative compartments and extracellularly-released membrane vesicles. Our findings suggest that the two new SEL1L variants are engaged in endosomal trafficking and secretion via vesicles, which could contribute to relieve ER stress in tumorigenic cells. P38 and p28 could therefore be relevant as diagnostic markers and/or therapeutic targets in cancer.
PLoS ONE, 2012
To understand how cytotoxic agent-induced cancer cell death affects the immune system is of funda... more To understand how cytotoxic agent-induced cancer cell death affects the immune system is of fundamental importance to stimulate immune response to counteract the high mortality due to cancer. Here we compared the immunogenicity of Primary Effusion Lymphoma (PEL) cell death induced by anticancer drug Bortezomib (Velcade) and Tyrphostin AG 490, a Janus Activated Kinase 2/signal trasducer and activator of transcription-3 (JAK2/STAT3) inhibitor. We show that both treatments were able to induce PEL apoptosis with similar kinetics and promote dendritic cells (DC) maturation. The surface expression of molecules involved in immune activation, namely calreticulin (CRT), heat shock proteins (HSP) 90 and 70 increased in dying cells. This was correlated with DC activation. We found that PEL cell death induced by Bortezomib was more effective in inducing uptake by DC compared to AG 490 or combination of both drugs. However the DC activation induced by all treatments was completely inhibited when these cells were pretreated with a neutralizing antiboby directed against the HSP90/70 and CRT common receptor, CD91. The activation of DC by Bortezomib and AG 490 treated PEL cells, as seen in the present study, might have important implications for a combined chemo and immunotherapy in such patients.
Molecular Cancer Therapeutics, 2012
Activating mutations in Kras are the most frequent mutations in human cancer. They define a subse... more Activating mutations in Kras are the most frequent mutations in human cancer. They define a subset of patients who do not respond to current therapies and for whom prognosis is poor. Oncogenic Kras has been shown to deregulate numerous signaling pathways of which the most intensively studied are the Ras/extracellular signal–regulated kinase cascade and the phosphoinositide 3-kinase (PI3K)/Akt cascade. However, to date, there are no effective targeted therapies in the clinic against Kras-mutant cancers. Here, we report that the β-galactoside–binding protein (βGBP) cytokine, a physiologic inhibitor of class I PI3Ks, is a potent activator of apoptosis in Kras-mutant colorectal cancer cells, even when coharboring mutant-activated PIK3CA. Our study unveils an elective route to intrinsic and extrinsic apoptosis, which involves the cytoskeleton. Early events are inhibition of PI3K activity and Rac-independent actin rearrangement assignable to phosphoinositide changes at the plasma membrane...
1 Killing of Kras mutant colon cancer cells via Rac-independent actin remodeling by the βGBP cyto... more 1 Killing of Kras mutant colon cancer cells via Rac-independent actin remodeling by the βGBP cytokine a physiological PI3K inhibitor therapeutically effective in vivo
PLOS Pathogens, 2020
SAMHD1 is a host restriction factor that functions to restrict both retroviruses and DNA viruses,... more SAMHD1 is a host restriction factor that functions to restrict both retroviruses and DNA viruses, based on its nuclear deoxynucleotide triphosphate (dNTP) hydrolase activity that limits availability of intracellular dNTP pools. In the present study, we demonstrate that SAMHD1 expression was increased following human cytomegalovirus (HCMV) infection, with only a modest effect on infectious virus production. SAMHD1 was rapidly phosphorylated at residue T592 after infection by cellular cyclin-dependent kinases, especially Cdk2, and by the viral kinase pUL97, resulting in a significant fraction of phosho-SAMHD1 being relocalized to the cytoplasm of infected fibroblasts, in association with viral particles and dense bodies. Thus, our findings indicate that HCMV-dependent SAMHD1 cytoplasmic delocalization and inactivation may represent a potential novel mechanism of HCMV evasion from host antiviral restriction activities.
British Journal of Cancer, 2019
Background Current approaches aimed at inducing immunogenic cell death (ICD) to incite an immune ... more Background Current approaches aimed at inducing immunogenic cell death (ICD) to incite an immune response against cancer neoantigens are based on the use of chemotherapeutics and other agents. Results are hampered by issues of efficacy, combinatorial approaches, dosing and toxicity. Here, we adopted a strategy based on the use of an immunomolecule that overcomes pharmachemical limitations. Methods Cytofluorometry, electron microscopy, RT-PCR, western blotting, apotome immunofluorescence, MLR and xenografts. Results We report that an ICD process can be activated without the use of pharmacological compounds. We show that in Kras-mut/TP53-mut colorectal cancer cells the 15 kDa βGBP cytokine, a T cell effector with onco-suppressor properties and a potential role in cancer immunosurveillance, induces key canonical events required for ICD induction. We document ER stress, autophagy that extends from cancer cells to the corresponding xenograft tumours, CRT cell surface shifting, ATP releas...
Acta neuropathologica, 2018
Tumours can be viewed as aberrant tissues or organs sustained by tumorigenic stem-like cells that... more Tumours can be viewed as aberrant tissues or organs sustained by tumorigenic stem-like cells that engage into dysregulated histo/organogenetic processes. Paragangliomas, prototypical organoid tumours constituted by dysmorphic variants of the vascular and neural tissues found in normal paraganglia, provide a model to test this hypothesis. To understand the origin of paragangliomas, we built a biobank comprising 77 cases, 18 primary cultures, 4 derived cell lines, 80 patient-derived xenografts and 11 cell-derived xenografts. We comparatively investigated these unique complementary materials using morphofunctional, ultrastructural and flow cytometric assays accompanied by microRNA studies. We found that paragangliomas contain stem-like cells with hybrid mesenchymal/vasculoneural phenotype, stabilized and expanded in the derived cultures. The viability and growth of such cultures depended on the downregulation of the miR-200 and miR-34 families, which allowed high PDGFRA and ZEB1 protei...
Journal of Cell Biology, 1992
We performed an immunocytochemical analysis to study the transfer of a marker protein (G glycopro... more We performed an immunocytochemical analysis to study the transfer of a marker protein (G glycoprotein coded by vesicular stomatitis virus ts 045 strain) from the intermediate compartment to the Golgi stacks in infected Vero cells. The intermediate compartment seemed to consist of about 30-40 separate units of clustered small vesicles and short tubules. The units contained Rab2 protein and were spread throughout the cytoplasm, with a ratio of about 6:4 in the peripheral versus perinuclear site. Time-course experiments revealed a progressive transfer of G glycoprotein from the intermediate compartment to the Golgi stacks, while the tubulo-vesicular units did not appear to change their intracellular distribution. Moreover, the labeling density of peripheral and perinuclear units decreased in parallel during the transfer. These results support the notion that the intermediate compartment is a station in the secretory pathway, and that a vesicular transport connects this station to the G...
Molecular and Cellular Biology, 1996
The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelect... more The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane and endocytic structures, such as coated pits and endosomes, and with the peripheral cytosol. Receptor activation in cells expressing phosphorylation-defective mutants of Shc and erbB-2 kinase showed that receptor autophosphorylation, but not Shc phosphorylation, is required for redistribution of Shc proteins. The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and...
Molecular Biology of the Cell, 1999
Interleukin 1β (IL-1β), a secretory protein lacking a signal peptide, does not follow the classic... more Interleukin 1β (IL-1β), a secretory protein lacking a signal peptide, does not follow the classical endoplasmic reticulum-to-Golgi pathway of secretion. Here we provide the evidence for a “leaderless” secretory route that uses regulated exocytosis of preterminal endocytic vesicles to transport cytosolic IL-1β out of the cell. Indeed, although most of the IL-1β precursor (proIL-1β) localizes in the cytosol of activated human monocytes, a fraction is contained within vesicles that cofractionate with late endosomes and early lysosomes on Percoll density gradients and display ultrastructural features and markers typical of these organelles. The observation of organelles positive for both IL-1β and the endolysosomal hydrolase cathepsin D or for both IL-1β and the lysosomal marker Lamp-1 further suggests that they belong to the preterminal endocytic compartment. In addition, similarly to lysosomal hydrolases, secretion of IL-1β is induced by acidotropic drugs. Treatment of monocytes with ...
Journal of virology, 2014
Autophagy is a catabolic pathway that helps cells to survive under stressful conditions. Cells al... more Autophagy is a catabolic pathway that helps cells to survive under stressful conditions. Cells also use autophagy to clear microbiological infections, but microbes have learned how to manipulate the autophagic pathway for their own benefit. The experimental evidence obtained in this study suggests that the autophagic flux is blocked at the final steps during the reactivation of Epstein-Barr virus (EBV) from latency. This is indicated by the level of the lipidated form of LC3 that does not increase in the presence of bafilomycin and by the lack of colocalization of autophagosomes with lysosomes, which correlates with reduced Rab7 expression. Since the inhibition of the early phases of autophagy impaired EBV replication and viral particles were observed in autophagic vesicles in the cytoplasm of producing cells, we suggest that EBV exploits the autophagic machinery for its transportation in order to enhance viral production. The autophagic block was not mediated by ZEBRA, an immediate...
Autophagy, 2008
as an ultrastructural marker of heavy metal toxicity in human cord blood hematopoietic stem cells.
Journal of Immunology Research, 2014
There is concern about the possible toxicity of palladium nanoparticles (Pd-NP), as they are rele... more There is concern about the possible toxicity of palladium nanoparticles (Pd-NP), as they are released in the environment through many applications. We previously studied the toxicity of Pd-NP at high concentrations; here we address the possible toxicity of Pd-NP at low, subtoxic doses. In particular, we have exposed normal human PBMC entering into the first in vitro mitotic division to Pd-NP and to Pd(IV) ions to evaluate ROS generation and cell cycle progression. We have measured a statistically significant increase of intracellular ROS in Pd(IV) exposed cells, but not in Pd-NP exposed cells. TEM revealed accumulation of lipid droplets and autophagic and mitophagic vacuoles, which appeared more conspicuous in cells exposed to Pd(IV) ions than to Pd-NP. Pd-NP were visible in the cytoplasm of Pd-NP exposed cells. Pd-NP addition was associated with a significant increase of cells within the G0/G1-phase and a significant reduction in GS- and G2/M-phases. Cells exposed to Pd(IV) ions sh...
PLoS ONE, 2013
Understanding the mechanisms of autophagy induction and its role during chemotherapeutic treatmen... more Understanding the mechanisms of autophagy induction and its role during chemotherapeutic treatments is of fundamental importance in order to manipulate it to improve the outcome of chemotherapy. In particular whether the bortezomibinduced autophagy plays a pro-survival or pro-death role is still controversial. In this study we investigated if bortezomib induced endoplasmic reticulum (ER) stress and activated autophagy in Primary Effusion Lymphoma (PEL) cells and how they influenced cell survival. We found that bortezomib induced up-regulation of the pro-survival and pro-death ER stress molecules BIP and CHOP and activated c-Jun NH2-terminal kinase (JNK), resulting in Bcl-2 phosphorylation and induction of autophagy. JNK and autophagy activation played a pro-survival role in this setting, thus their inhibition increased the bortezomib cytotoxic effect and PARP cleavage in PEL cells. Based on our results we suggest that the combination of bortezomib with JNK or autophagy inhibitors could be exploited to improve the outcome of therapy of this aggressive B cell lymphoma.
British Journal of Clinical Pharmacology, 2014
The aim of the study was to investigate whether human megakaryocytic cells have an adaptive respo... more The aim of the study was to investigate whether human megakaryocytic cells have an adaptive response to aspirin treatment, leading to an enhancement of multidrug resistance protein-4 (MRP4) expression in circulating platelets responsible for a reduced aspirin action. We recently found that platelet MRP4 overexpression has a role in reducing aspirin action in patients after bypass surgery. Aspirin enhances MRP4-mRNA levels in rat liver and drug administration transcriptionally regulates MRP4 gene expression through peroxisome proliferator-activated receptor-α (PPARα). METHODS The effects induced by aspirin or PPARα agonist (WY14643) on MRP4 modulation were evaluated in vitro in a human megakaryoblastic DAMI cell line, in megakaryocytes (MKs) and in platelets obtained from human haematopoietic progenitor cell (HPC) cultures, and in vivo platelets obtained from aspirin treated healthy volunteers (HV). RESULTS In DAMI cells, aspirin and WY14643 treatment induced a significant increase in MRP4 and PPARα expression. In human MKs grown in the presence of either aspirin or WY14643, MRP4 and PPARα-mRNA were higher than in control cultures and derived platelets showed an enhancement in MRP4 protein expression. The ability of aspirin to modulate MRP4 expression in MKs and to transfer it to platelets was also confirmed in vivo. In fact, we found the highest MRP4 mRNA and protein expression in platelets obtained from HV after 15 days' aspirin treatment. CONCLUSIONS The present study provides evidence, for the first time, that aspirin treatment affects the platelet protein pattern through MK genomic modulation. This work represents an innovative and attractive approach, useful both to identify patients less sensitive to aspirin and to improve pharmacological treatment in cardiovascular high-risk patients. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Aspirin treatment reduces cardiovascular complication in high risk patients. • Less aspirin inhibition of platelet function, for a residual thromboxane formation, is independently associated with an increased risk of cardiovascular events. • Platelet multidrug resistance protein-4 (MRP4) overexpression is a new mechanism of suboptimal platelet inhibition by aspirin in patients who have undergone recent CABG surgery. WHAT THIS STUDY ADDS • Aspirin induces changes in megakaryocytes gene expression leading to MRP4 protein up-regulation in human platelets. • The nuclear receptor, peroxisome proliferator-activated receptor-α (PPARα) is involved in aspirin dependent MRP4 overexpression.
Virology, 1999
A peculiar characteristic of cells infected with human herpesvirus 6 (HHV6) is the absence of vir... more A peculiar characteristic of cells infected with human herpesvirus 6 (HHV6) is the absence of viral glycoproteins on the plasma membrane, which may reflect an atypical intracellular transport of the virions and/or the viral glycoproteins, different from that of the other members of the herpesvirus family. To investigate the maturation pathway of HHV-6 in the human T lymphoid cell line HSB-2, we used lectin cytochemistry and immunogold labeling combined with several electron microscopical techniques, such as ultrathin frozen sections, postembedding, and fracture-label. Immunolabeling with anti-gp116 and anti-gp82-gp105 monoclonal antibodies revealed that the viral glycoproteins are undetectable on nuclear membranes and that at the inner nuclear membrane nucleocapsids acquire a primary envelope lacking viral glycoproteins. After de-envelopment, cytoplasmic nucleocapsids acquire a thick tegument and a secondary envelope with viral glycoproteins at the level of neo-formed annulate lamellae or at the cis-side of the Golgi complex. Cytochemical labeling using helix pomatia lectin revealed that the newly acquired secondary viral envelopes contain intermediate forms of glycocomponents, suggesting a sequential glycosylation of the virions during their transit through the Golgi area before their final release into the extracellular space. Immunogold labeling also showed that the viral glycoproteins, which are not involved in the budding process, reach and accumulate in the endosomal/lysosomal compartment. Pulse-chase analysis indicated degradation of the gp116, consistent with its endosomal localization and with the absence of viral glycoproteins on the cell surface of the infected cells.
Virology, 2001
The intracellular localization of hepatitis C virus structural proteins was analyzed by confocal ... more The intracellular localization of hepatitis C virus structural proteins was analyzed by confocal immunofluorescence microscopy, cell fractionation, and immunoelectron microscopy in stably transfected cells that do not overexpress the viral proteins. The results strongly suggest that at steady state the structural proteins reside not only in the endoplasmic reticulum but also in the intermediate compartment and cis-Golgi complex region. By analogy with other viral systems, this finding raises the possibility that the intermediate compartment and cis-Golgi complex play a role in the assembly and budding of hepatitis C virus.
The Journal of Cell Biology, 1987
Sindbis virus-infected baby hamster kidney (BHK) cells were analyzed by thin section fracture-lab... more Sindbis virus-infected baby hamster kidney (BHK) cells were analyzed by thin section fracture-label. Specific immunolabel with antiviral glycoprotein antibodies was used in conjunction with colloidal gold-conjugated protein A. As we previously reported (Torrisi, M. R., and S. Bonatti, 1985, J. Cell Biol., 101:1300-1306), Sindbis transmembrane glycoproteins are present in the inner nuclear membrane as well as in the outer nuclear membrane, endoplasmic reticulum, Golgi stacks and vesicles, and plasma membranes. Viral glycoproteins located on the inner nuclear membrane resemble those present on the outer membrane in terms of amount, distribution, and preferential partition after fracture. We show in this paper that Sindbis glycoproteins after treatment with cycloheximide are removed from the inner nuclear membrane with the same kinetics as their counterparts present on the outer membrane. This finding strongly suggests that newly synthesized transmembrane glycoproteins may freely diffu...
Proceedings of the National Academy of Sciences, 1996
An increasingly large number of proteins involved in signal transduction have been identified in ... more An increasingly large number of proteins involved in signal transduction have been identified in recent years and shown to control different steps of cell survival, proliferation, and differentiation. Among the genes recently identified at the tip of the long arm of the human X chromosome, a novel gene, C1, encodes a protein that appears to represent a newly discovered member of the group of signaling proteins involved in regulation of the small GTP binding proteins of the ras superfamily. The protein encoded by C1, p115, is synthesized predominantly in cells of hematopoietic origin. It is characterized by two regions of similarity to motifs present in known proteins: GAP and SH3 homologous regions. Its localization in a narrow cytoplasmic region just below the plasma membrane and its inhibitory effect on stress fiber organization indicate that p115 may down regulate rho-like GTPases in hematopoietic cells.
PLoS ONE, 2011
We describe here two novel endogenous variants of the human endoplasmic reticulum (ER) cargo rece... more We describe here two novel endogenous variants of the human endoplasmic reticulum (ER) cargo receptor SEL1LA, designated p38 and p28. Biochemical and RNA interference studies in tumorigenic and non-tumorigenic cells indicate that p38 and p28 are N-terminal, ER-anchorless and more stable relative to the canonical transmembrane SEL1LA. P38 is expressed and constitutively secreted, with increase after ER stress, in the KMS11 myeloma line and in the breast cancer lines MCF7 and SKBr3, but not in the non-tumorigenic breast epithelial MCF10A line. P28 is detected only in the poorly differentiated SKBr3 cell line, where it is secreted after ER stress. Consistently with the presence of p38 and p28 in culture media, morphological studies of SKBr3 and KMS11 cells detect N-terminal SEL1L immunolabeling in secretory/degradative compartments and extracellularly-released membrane vesicles. Our findings suggest that the two new SEL1L variants are engaged in endosomal trafficking and secretion via vesicles, which could contribute to relieve ER stress in tumorigenic cells. P38 and p28 could therefore be relevant as diagnostic markers and/or therapeutic targets in cancer.
PLoS ONE, 2012
To understand how cytotoxic agent-induced cancer cell death affects the immune system is of funda... more To understand how cytotoxic agent-induced cancer cell death affects the immune system is of fundamental importance to stimulate immune response to counteract the high mortality due to cancer. Here we compared the immunogenicity of Primary Effusion Lymphoma (PEL) cell death induced by anticancer drug Bortezomib (Velcade) and Tyrphostin AG 490, a Janus Activated Kinase 2/signal trasducer and activator of transcription-3 (JAK2/STAT3) inhibitor. We show that both treatments were able to induce PEL apoptosis with similar kinetics and promote dendritic cells (DC) maturation. The surface expression of molecules involved in immune activation, namely calreticulin (CRT), heat shock proteins (HSP) 90 and 70 increased in dying cells. This was correlated with DC activation. We found that PEL cell death induced by Bortezomib was more effective in inducing uptake by DC compared to AG 490 or combination of both drugs. However the DC activation induced by all treatments was completely inhibited when these cells were pretreated with a neutralizing antiboby directed against the HSP90/70 and CRT common receptor, CD91. The activation of DC by Bortezomib and AG 490 treated PEL cells, as seen in the present study, might have important implications for a combined chemo and immunotherapy in such patients.
Molecular Cancer Therapeutics, 2012
Activating mutations in Kras are the most frequent mutations in human cancer. They define a subse... more Activating mutations in Kras are the most frequent mutations in human cancer. They define a subset of patients who do not respond to current therapies and for whom prognosis is poor. Oncogenic Kras has been shown to deregulate numerous signaling pathways of which the most intensively studied are the Ras/extracellular signal–regulated kinase cascade and the phosphoinositide 3-kinase (PI3K)/Akt cascade. However, to date, there are no effective targeted therapies in the clinic against Kras-mutant cancers. Here, we report that the β-galactoside–binding protein (βGBP) cytokine, a physiologic inhibitor of class I PI3Ks, is a potent activator of apoptosis in Kras-mutant colorectal cancer cells, even when coharboring mutant-activated PIK3CA. Our study unveils an elective route to intrinsic and extrinsic apoptosis, which involves the cytoskeleton. Early events are inhibition of PI3K activity and Rac-independent actin rearrangement assignable to phosphoinositide changes at the plasma membrane...