Lucelina Batista Santos - Academia.edu (original) (raw)
Uploads
Papers by Lucelina Batista Santos
Trends in Applied and Computational Mathematics, Oct 13, 2004
International Journal of Mathematics and Mathematical Sciences, 2006
Optimization, Nov 1, 2009
Page 1. May 18, 2007 15:42 Optimization trabajo˙optimization Optimization Vol. 00, No. 00, Month-... more Page 1. May 18, 2007 15:42 Optimization trabajo˙optimization Optimization Vol. 00, No. 00, Month-Month 200x, 117 Necessary and sufficient conditions for weak efficiency in nonsmooth vectorial optimization problems Lucelina ...
Numerical Functional Analysis and Optimization
Applicationes Mathematicae, 2022
Optimization, 2009
Page 1. May 18, 2007 15:42 Optimization trabajo˙optimization Optimization Vol. 00, No. 00, Month-... more Page 1. May 18, 2007 15:42 Optimization trabajo˙optimization Optimization Vol. 00, No. 00, Month-Month 200x, 117 Necessary and sufficient conditions for weak efficiency in nonsmooth vectorial optimization problems Lucelina ...
Computers & Mathematics with Applications, 2010
Computers & Mathematics with Applications, 2004
Computers & Mathematics with Applications, 2008
ime.unicamp.br
Page 1. Invexity Generalized and Weakly Efficient Solutions for Some Vectorial Optimization Probl... more Page 1. Invexity Generalized and Weakly Efficient Solutions for Some Vectorial Optimization Problem in Banach Spaces Lucelina Batista dos Santos a,1, Rafaela Osuna-Gómezb,2 , Marko A. Rojas-Medar a,3 and Antonio Rufián-Lizanab,4 ...
Applied Mathematics and Computation, 2008
Acta Mathematica Sinica, English Series, 2008
Proyecciones, Sep 1, 2018
Neste trabalho, um teorema de alternativa do tipo Gordan e utilizado no estudo de condicoes neces... more Neste trabalho, um teorema de alternativa do tipo Gordan e utilizado no estudo de condicoes necessarias de otimalidade para o problema classico de programacao nao linear (finito-dimensional). Condicoes suficientes sao obtidas atraves de uma nocao de convexidade generalizada (chamada invexidade). Alem disso, sem hipoteses de convexidade (generalizada ou nao) sao obtidas condicoes suficientes de otimalidade via metodo de deformacao. Resultados analogos sao validos para o problema de tempo continuo (exceto o metodo de deformacao). Abstract
Multicriteria optimization problems have been introduced and studied in various ways. In this wor... more Multicriteria optimization problems have been introduced and studied in various ways. In this work, we will consider such problems whose ideal situation is determining “simultaneous minimum” of a set of functions , 1,..., i f i m = over some domain . n X ⊆ In general, may not exist a point in X such that all i f attain their minimum and another concept of solution is Pareto optimality. Consider a nonempty subset n X ⊆ and a set of functions : i f X → , 1,.., . i m = We will consider the problem Minimize 1 ( ( ),..., ( )) m f x f x subject to . x X ∈ (P) Recall that * x X ∈ is said to be Pareto optimal for (P) if there is no x X ∈ such that * ( ) ( ), 1,..., i i f x f x i m ≤ = with strict inequality for some . i Many modifications of this concept have been studied. In this work, we will focus on the proper Pareto optimality, in the sense of Geoffrion [2]: An element * x X ∈ is said to be properly Pareto optimal for (P) if one can find a constant 0 d > such that for all , i the sy...
Trends in Applied and Computational Mathematics, Oct 13, 2004
International Journal of Mathematics and Mathematical Sciences, 2006
Optimization, Nov 1, 2009
Page 1. May 18, 2007 15:42 Optimization trabajo˙optimization Optimization Vol. 00, No. 00, Month-... more Page 1. May 18, 2007 15:42 Optimization trabajo˙optimization Optimization Vol. 00, No. 00, Month-Month 200x, 117 Necessary and sufficient conditions for weak efficiency in nonsmooth vectorial optimization problems Lucelina ...
Numerical Functional Analysis and Optimization
Applicationes Mathematicae, 2022
Optimization, 2009
Page 1. May 18, 2007 15:42 Optimization trabajo˙optimization Optimization Vol. 00, No. 00, Month-... more Page 1. May 18, 2007 15:42 Optimization trabajo˙optimization Optimization Vol. 00, No. 00, Month-Month 200x, 117 Necessary and sufficient conditions for weak efficiency in nonsmooth vectorial optimization problems Lucelina ...
Computers & Mathematics with Applications, 2010
Computers & Mathematics with Applications, 2004
Computers & Mathematics with Applications, 2008
ime.unicamp.br
Page 1. Invexity Generalized and Weakly Efficient Solutions for Some Vectorial Optimization Probl... more Page 1. Invexity Generalized and Weakly Efficient Solutions for Some Vectorial Optimization Problem in Banach Spaces Lucelina Batista dos Santos a,1, Rafaela Osuna-Gómezb,2 , Marko A. Rojas-Medar a,3 and Antonio Rufián-Lizanab,4 ...
Applied Mathematics and Computation, 2008
Acta Mathematica Sinica, English Series, 2008
Proyecciones, Sep 1, 2018
Neste trabalho, um teorema de alternativa do tipo Gordan e utilizado no estudo de condicoes neces... more Neste trabalho, um teorema de alternativa do tipo Gordan e utilizado no estudo de condicoes necessarias de otimalidade para o problema classico de programacao nao linear (finito-dimensional). Condicoes suficientes sao obtidas atraves de uma nocao de convexidade generalizada (chamada invexidade). Alem disso, sem hipoteses de convexidade (generalizada ou nao) sao obtidas condicoes suficientes de otimalidade via metodo de deformacao. Resultados analogos sao validos para o problema de tempo continuo (exceto o metodo de deformacao). Abstract
Multicriteria optimization problems have been introduced and studied in various ways. In this wor... more Multicriteria optimization problems have been introduced and studied in various ways. In this work, we will consider such problems whose ideal situation is determining “simultaneous minimum” of a set of functions , 1,..., i f i m = over some domain . n X ⊆ In general, may not exist a point in X such that all i f attain their minimum and another concept of solution is Pareto optimality. Consider a nonempty subset n X ⊆ and a set of functions : i f X → , 1,.., . i m = We will consider the problem Minimize 1 ( ( ),..., ( )) m f x f x subject to . x X ∈ (P) Recall that * x X ∈ is said to be Pareto optimal for (P) if there is no x X ∈ such that * ( ) ( ), 1,..., i i f x f x i m ≤ = with strict inequality for some . i Many modifications of this concept have been studied. In this work, we will focus on the proper Pareto optimality, in the sense of Geoffrion [2]: An element * x X ∈ is said to be properly Pareto optimal for (P) if one can find a constant 0 d > such that for all , i the sy...