Marcelina Parrizas - Academia.edu (original) (raw)
Papers by Marcelina Parrizas
International Journal of Molecular Sciences
Most cells release extracellular vesicles (EVs) that can be detected circulating in blood. We and... more Most cells release extracellular vesicles (EVs) that can be detected circulating in blood. We and others have shown that the microRNA contents of these vesicles induce transcriptomic changes in acceptor cells, contributing to the adjustment of metabolic homeostasis in response to environmental demands. Here, we explore the potential for modulating obesity- and exercise-derived EV-microRNAs to treat the metabolic dysfunction associated with obesity in mice. Treatment with EV-miRNAs alleviated glucose intolerance and insulin resistance in obese mice to an extent similar to that of high-intensity interval training, although only exercise improved cardiorespiratory fitness and decreased body weight. Mechanistically, EV-miRNAs decreased fatty acid and cholesterol biosynthesis pathways in the liver, reducing hepatic steatosis and increasing insulin sensitivity, resulting in decreased glycemia and triglyceridemia. Our data suggest that manipulation of EV-miRNAs may be a viable strategy to ...
Scientific Reports, 2021
Amyloid deposits in pancreatic islets, mainly formed by human islet amyloid polypeptide (hIAPP) a... more Amyloid deposits in pancreatic islets, mainly formed by human islet amyloid polypeptide (hIAPP) aggregation, have been associated with loss of β-cell mass and function, and are a pathological hallmark of type 2 diabetes (T2D). Treatment with chaperones has been associated with a decrease in endoplasmic reticulum stress leading to improved glucose metabolism. The aim of this work was to investigate whether the chemical chaperone 4-phenylbutyrate (PBA) prevents glucose metabolism abnormalities and amyloid deposition in obese agouti viable yellow (Avy) mice that overexpress hIAPP in β cells (Avy hIAPP mice), which exhibit overt diabetes. Oral PBA treatment started at 8 weeks of age, when Avy hIAPP mice already presented fasting hyperglycemia, glucose intolerance, and impaired insulin secretion. PBA treatment strongly reduced the severe hyperglycemia observed in obese Avy hIAPP mice in fasting and fed conditions throughout the study. This effect was paralleled by a decrease in hyperinsu...
Molecular Metabolism, 2021
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Innovative biomarkers are needed to improve the management of patients with type 2 diabetes melli... more Innovative biomarkers are needed to improve the management of patients with type 2 diabetes mellitus (T2DM). Blood circulating miRNAs have been proposed as a potential tool to detect T2DM complications but the lack of tissue specificity, among other reasons, has hampered their translation to clinical settings. Extracellular vesicle (EV)-shuttled miRNAs have been proposed as an alternative approach. Here, we adapted an immunomagnetic bead-based method to isolate plasma CD31 positive (+) EVs to harvest vesicles deriving from tissues relevant for T2DM complications. Surface marker characterization showed that CD31+ EVs were also positive for a range of markers typical of both platelets and activated endothelial cells. After characterization, we quantified 11 candidate miRNAs associated with vascular performance and shuttled by CD31+EVs in a large (n=218), cross-sectional cohort of patients categorized as T2DM without complications, T2DM with complications, and controls. We found that 1...
Proceedings of the National Academy of Sciences, 2018
Significance The presence of extracellular miRNAs in body fluids has been exploited as a brand-ne... more Significance The presence of extracellular miRNAs in body fluids has been exploited as a brand-new source of biomarkers for different diseases. A fraction of those extracellular miRNAs, contained in extracellular vesicles and exosomes, are additionally being revealed as novel mediators of intercellular communication. Here, we show that systemic injection of exosomes transfected with synthetic miRNAs simulating those enriched in the plasma of obese mice robustly induces glucose intolerance, adipose inflammation, and hepatic steatosis in lean mice. These results support a role for exosomal miRNAs in the modulation of glucose and lipid metabolism in mice and may help us uncover thus far unexplored pathological mechanisms and provide us with novel therapeutic targets.
The FASEB Journal, 2017
Human islet amyloid polypeptide (hIAPP) aggregation is associated with b-cell dysfunction and dea... more Human islet amyloid polypeptide (hIAPP) aggregation is associated with b-cell dysfunction and death in type 2 diabetes (T2D). we aimed to determine whether in vivo treatment with chemical chaperone 4-phenylbutyrate (PBA) ameliorates hIAPP-induced b-cell dysfunction and islet amyloid formation. Oral administration of PBA in hIAPP transgenic (hIAPP Tg) mice expressing hIAPP in pancreatic b cells counteracted impaired glucose homeostasis and restored glucose-stimulated insulin secretion. Moreover, PBA treatment almost completely prevented the transcriptomic alterations observed in hIAPP Tg islets, including the induction of genes related to inflammation. PBA also increased b-cell viability and improved insulin secretion in hIAPP Tg islets cultured under glucolipotoxic conditions. Strikingly, PBA not only prevented but even reversed islet amyloid deposition, pointing to a direct effect of PBA on hIAPP. This was supported by in silico calculations uncovering potential binding sites of PBA to monomeric, dimeric, and pentameric fibrillar structures, and by in vitro assays showing inhibition of hIAPP fibril formation by PBA. Collectively, these results uncover a novel beneficial effect of PBA on glucose homeostasis by restoring b-cell function and preventing amyloid formation in mice expressing hIAPP in b cells, highlighting the therapeutic potential of PBA for the treatment of T2D.
PLOS ONE, 2016
Objective Previous studies have confirmed Slug as a key player in regulating phenotypic changes i... more Objective Previous studies have confirmed Slug as a key player in regulating phenotypic changes in several cell models, however, its role in smooth muscle cells (SMC) has never been assessed. The purpose of this study was to evaluate the expression of Slug during the phenotypic switch of SMC in vitro and throughout the development of vascular remodeling. Methods and Results Slug expression was decreased during both cell-to-cell contact and TGFβ1 induced SMC differentiation. Tumor necrosis factor-α (TNFα), a known inductor of a proliferative/dedifferentiated SMC phenotype, induces the expression of Slug in SMC. Slug knockdown blocked TNFα-induced SMC phenotypic change and significantly reduced both SMC proliferation and migration, while its overexpression blocked the TGFβ1-induced SMC differentiation and induced proliferation and migration. Genome-wide transcriptomic analysis showed that in SMC, Slug knockdown induced changes mainly in genes related to proliferation and migration, indicating that Slug controls these processes in SMC. Notably, Slug expression was significantly up-regulated in lungs of mice using a model of pulmonary hypertension-related vascular remodeling. Highly remodeled human pulmonary arteries also showed an increase of Slug expression compared to less remodeled arteries.
Molecular and Cellular Biology, 2001
Mutations in the gene encoding hepatic nuclear factor 1-α (HNF1-α) cause a subtype of human diabe... more Mutations in the gene encoding hepatic nuclear factor 1-α (HNF1-α) cause a subtype of human diabetes resulting from selective pancreatic β-cell dysfunction. We have analyzed mice lacking HNF1-α to study how this protein controls β-cell-specific transcription in vivo. We show that HNF1-α is essential for the expression of glut2 glucose transporter and L-type pyruvate kinase ( pklr ) genes in pancreatic insulin-producing cells, whereas in liver, kidney, or duodenum tissue, glut2 and pklr expression is maintained in the absence of HNF1-α. HNF1-α nevertheless occupies the endogenous glut2 and pklr promoters in both pancreatic islet and liver cells. However, it is indispensable for hyperacetylation of histones in glut2 and pklr promoter nucleosomes in pancreatic islets but not in liver cells, where glut2 and pklr chromatin remains hyperacetylated in the absence of HNF1-α. In contrast, the phenylalanine hydroxylase promoter requires HNF1-α for transcriptional activity and localized histon...
PLoS ONE, 2014
TCF7L2 is the susceptibility gene for Type 2 diabetes (T2D) with the largest effect on disease ri... more TCF7L2 is the susceptibility gene for Type 2 diabetes (T2D) with the largest effect on disease risk that has been discovered to date. However, the mechanisms by which TCF7L2 contributes to the disease remain largely elusive. In addition, epigenetic mechanisms, such as changes in DNA methylation patterns, might have a role in the pathophysiology of T2D. This study aimed to investigate the differences in terms of DNA methylation profile of TCF7L2 promoter gene between type 2 diabetic patients and age-and Body Mass Index (BMI)-matched controls. We included 93 type 2 diabetic patients that were recently diagnosed for T2D and exclusively on diet (without any pharmacological treatment). DNA was extracted from whole blood and DNA methylation was assessed using the Sequenom EpiTYPER system. Type 2 diabetic patients were more insulin resistant than their matched controls (mean HOMA IR 2.6 vs 1.8 in controls, P,0.001) and had a poorer beta-cell function (mean HOMA B 75.7 vs. 113.6 in controls, P,0.001). Results showed that 59% of the CpGs analyzed in TCF7L2 promoter had significant differences between type 2 diabetic patients and matched controls. In addition, fasting glucose, HOMA-B, HOMA-IR, total cholesterol and LDL-cholesterol correlated with methylation in specific CpG sites of TCF7L2 promoter. After adjustment by age, BMI, gender, physical inactivity, waist circumference, smoking status and diabetes status uniquely fasting glucose, total cholesterol and LDL-cholesterol remained significant. Taken together, newly diagnosed, drug-naïve type 2 diabetic patients display specific epigenetic changes at the TCF7L2 promoter as compared to age-and BMI-matched controls. Methylation in TCF7L2 promoter is further correlated with fasting glucose in peripheral blood DNA, which sheds new light on the role of epigenetic regulation of TCF7L2 in T2D.
Journal of Alzheimers Disease, 2013
The senescence-accelerated SAMP8 mouse is considered a useful non-transgenic model for studying a... more The senescence-accelerated SAMP8 mouse is considered a useful non-transgenic model for studying aspects of progressive cognitive decline and Alzheimer's disease (AD). Using SAMR1 mice as controls, here we explored the effects of 6 months of voluntary wheel running in 10-month-old female SAMP8 mice. Exercise in SAMP8 mice improved phenotypic features associated with premature aging (i.e., skin color and body tremor) and enhanced vascularization and BDNF gene expression in the hippocampus compared with controls. With the aim of identifying genes involved in brain aging responsive to long-term exercise, we performed whole genome microarray studies in hippocampus from sedentary SAMP8 (P8sed), SAMR1 (R1sed), and exercised SAMP8 (P8run) mice. The genes differentially expressed in P8sed versus R1sed were considered as putative aging markers (i) and those differentially expressed in P8run versus P8sed were considered as genes modulated by exercise (ii). Genes differentially expressed in both comparisons (i and ii) were considered as putative aging genes responsive to physical exercise. We identified 34 genes which met both criteria. Gene ontology analysis revealed that they are mainly involved in functions related to extracellular matrix maintenance. Selected genes were validated by real-time quantitative PCR assays, i.e., collagen type 1 alpha 1 (col1a1), collagen type 1 alpha 2 (col1a2), fibromodulin (fmod), prostaglandin D(2) synthase (ptgds), and aldehyde dehydrogenase (Aldh1a2). As a whole, our study suggests that exercise training during adulthood may prevent or delay gene expression alterations and processes associated with hippocampal aging in at-risk subjects.
Journal of Neuroinflammation, 2014
Background: Aging is characterized by a low-grade systemic inflammation that contributes to the p... more Background: Aging is characterized by a low-grade systemic inflammation that contributes to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). However, little knowledge is currently available on the molecular processes leading to chronic neuroinflammation. In this context, recent studies have described the role of chromatin regulators in inflammation and longevity including the REST corepressor (Rcor)-2 factor, which seems to be involved in an inflammatory suppressive program. Methods: To assess the impact of Rcor2 in age-related inflammation, gene expression levels were quantified in different tissues and ages of the spontaneous senescence-accelerated P8 mouse (P8) using the SAMR1 mouse (R1) as a control. Specific siRNA transfection in P8 and R1 astrocyte cultures was used to determine Rcor2 involvement in the modulation of neuroinflammation. The effect of lipopolysaccharide (LPS) treatment on Rcor2 levels and neuroinflammation was analyzed both in vivo and in vitro. Results: P8 mice presented a dramatic decrease in Rcor2 gene expression compared with R1 controls in splenocytes, an alteration also observed in the brain cortex, hippocampus and primary astrocytes of these mice. Rcor2 reduction in astrocytes was accompanied by an increased basal expression of the interleukin (Il)-6 gene. Strikingly, intraperitoneal LPS injection in R1 mice downregulated Rcor2 in the hippocampus, with a concomitant upregulation of tumor necrosis factor (Tnf-α), Il1-β and Il6 genes. A negative correlation between Rcor2 and Il6 gene expression was also verified in LPS-treated C6 glioma cells. Knock down of Rcor2 by siRNA transfection (siRcor2) in R1 astrocytes upregulated Il6 gene expression while siRcor2 further increased Il6 expression in P8 astrocytes. Moreover, LPS activation provoked a further downregulation of Rcor2 and an amplified induction of Il6 in siRcor2-tranfected astrocytes. Conclusions: Data presented here show interplay between Rcor2 downregulation and increased inflammation and suggest that Rcor2 may be a key regulator of inflammaging.
Role of the Adipocyte in Development of Type 2 Diabetes, 2011
Role of the Adipocyte in Development of Type 2 Diabetes 66 variety of inflammatory mediators that... more Role of the Adipocyte in Development of Type 2 Diabetes 66 variety of inflammatory mediators that on the one hand attract leukocytes and platelets to the affected site, and on the other hand activate the endothelial cells, increasing their permeability to leukocytes (specifically neutrophils) while avoiding extravasation of erythrocytes (Medzhitov, 2008). The concluding stage of inflammation is resolution, mediated mainly by the tissue resident macrophages that secrete anti-inflammatory mediators to inhibit further recruitment of neutrophils while favoring that of monocytes that remove dead cells and participate in tissue repair and remodeling (Medzhitov, 2008). If resolution is not forthcoming, chronic inflammation ensues, ultimately resulting in tissue damage and metabolic demise of the organism. Obesity is nowadays being accepted as a state of chronic low-grade inflammation (Xu et al., 2003; Weisberg et al., 2006). This inflammatory state impacts the function of many organs and tissues, from the adipose tissue itself to the endothelium, the central nervous system, the pancreas or the liver, and is being recognized as etiological of the aging process.
Muscle & Nerve, 2011
The protein kinase product of the gene mutated in myotonic dystrophy 1 (DMPK) is reported to play... more The protein kinase product of the gene mutated in myotonic dystrophy 1 (DMPK) is reported to play a role in cardiac pathophysiology. To gain insight into the molecular mechanisms modulated by DMPK, we characterize the impact of DMPK ablation in the context of cardiac β‐adrenergic function. Our data demonstrate that DMPK knockout mice present altered β‐agonist–induced responses and suggest that this is due, at least in part, to a reduced density of β1‐adrenergic receptors in cardiac plasma membranes. Muscle Nerve 45: 128–130, 2012
The Journal of clinical endocrinology and metabolism, Jan 22, 2014
Context: Diabetes is frequently diagnosed late, when the development of complications is almost i... more Context: Diabetes is frequently diagnosed late, when the development of complications is almost inevitable, decreasing the quality of life of patients. However, early detection of affected individuals would allow the implementation of timely and effective therapies. Objective: Here we set to describe the profile of circulating microRNAs in prediabetic patients with the intention of identifying novel diagnostic and therapeutic tools. Design: We used real-time RT-PCR to measure the abundance of 176 miRNAs in serum of a cohort of 92 control and prediabetic individuals with either impaired fasting glucose or impaired glucose tolerance, as well as newly diagnosed diabetic patients. We validated the results in a second cohort of control and prediabetic subjects undergoing a therapeutic exercise intervention, as well as in a mouse model of glucose intolerance. Results: We identified two miRNAs, miR-192 and miR-193b, whose abundance is significantly increased in the prediabetic state but no...
Proceedings of the National Academy of Sciences, 2001
Mutations in the human genes encoding hepatocyte nuclear factors (HNF) 1α, 1β, 4α, and IPF1(PDX1/... more Mutations in the human genes encoding hepatocyte nuclear factors (HNF) 1α, 1β, 4α, and IPF1(PDX1/IDX1/STF1) result in pancreatic β cell dysfunction and diabetes mellitus. In hepatocytes, hnf4α controls the transcription of hnf1α , suggesting that this same interaction may operate in β cells and thus account for the common diabetic phenotype. We show that, in pancreatic islet and exocrine cells, hnf4α expression unexpectedly depends on hnf1α . This effect is tissue-specific and mediated through direct occupation by hnf1α of an alternate promoter located 45.6 kb from the previously characterized hnf4α promoter. Hnf1α also exerts direct control of pancreatic-specific expression of hnf4 γ and hnf3γ . Hnf1α dependence of hnf4α , hnf4γ , hnf3γ , and two previously characterized distal targets ( glut2 and pklr ) is established only after differentiated cells arise during pancreatic embryonic development. These studies define an unexpected hierarchical regulatory relationship between two ge...
PLoS ONE, 2013
GIP action in type 2 diabetic (T2D) patients is altered. We hypothesized that methylation changes... more GIP action in type 2 diabetic (T2D) patients is altered. We hypothesized that methylation changes could be present in GIP receptor of T2D patients. This study aimed to assess the differences in DNA methylation profile of GIPR promoter between T2D patients and age-and Body Mass Index (BMI)-matched controls. We included 93 T2D patients (cases) that were uniquely on diet (without any anti-diabetic pharmacological treatment). We matched one control (with oral glucose tolerance test negative, non diabetic), by age and BMI, for every case. Cytokines and hormones were determined by ELISA. DNA was extracted from whole blood and DNA methylation was assessed using the Sequenom EpiTYPER system. Our results showed that T2D patients were more insulin resistant and had a poorer b cell function than their controls. Fasting adiponectin was lower in T2D patients as compared to controls (7.063.8 mgr/mL vs. 10.064.2 mgr/mL). Levels of IL 12 in serum were almost double in T2D patients (52.8658.3 pg/mL vs. 29.7637.4 pg/mL). We found that GIPR promoter was hypomethylated in T2D patients as compared to controls. In addition, HOMA-IR and fasting glucose correlated negatively with mean methylation of GIPR promoter, especially in T2D patients. This case-control study confirms that newly diagnosed, drug-naïve T2D patients are more insulin resistant and have worse b cell function than age-and BMI-matched controls, which is partly related to changes in the insulin-sensitizing metabolites (adiponectin), in the proinflammatory profile (IL12) and we suggest in the methylation pattern of GIPR. Our study provides novel findings on GIPR promoter methylation profile which may improve our ability to understand type 2 diabetes pathogenesis.
Journal of Hepatology, 2005
Selective cyclooxygenase (COX)-2 inhibitors do not adversely affect renal function in experimenta... more Selective cyclooxygenase (COX)-2 inhibitors do not adversely affect renal function in experimental cirrhosis. In the current study, we investigated the molecular mechanisms underlying the effects of the selective COX-2 inhibitor, celecoxib, and assessed the influence of albumin on its actions. Rat mesangial cells (RMC) were incubated with celecoxib in the absence or presence of albumin, and levels of selected vasoconstrictor eicosanoids, renin release and alpha-smooth muscle actin (alpha-SMA) expression were determined. The effects of celecoxib on PPARgamma were assessed in RMC co-transfected with PPARgamma and luciferase reporter constructs. Under resting conditions, RMC expressed COX-1, COX-2 and 12/15-lipoxygenase and mainly generated prostaglandin (PG)E2, thromboxane (TX)B2, 12-hydroxyeicosatetraenoic acid (12-HETE) and 8-epi-PGF2alpha. Celecoxib, in addition to reducing PGE2, significantly decreased 8-epi-PGF2alpha formation. In the presence of albumin, celecoxib also reduced TXB2 and 12-HETE. Albumin per se inhibited PGE2 as well as renin release. In trans-activation assays, celecoxib acted as a PPARgamma agonist whereas albumin inhibited PPARgamma as well as 15d-PGJ2-induced PPARgamma activation. Finally, celecoxib and albumin potentiated the inhibitory effect of 15d-PGJ2 on alpha-SMA expression. These data provide novel molecular mechanisms of celecoxib and their modulation by albumin, that may be relevant to prevent renal dysfunction in conditions of unbalanced effective blood volume.
Journal of Clinical Investigation, 2002
Mutations in the genes encoding hepatocyte nuclear factor 4α (HNF-4α) and HNF-1α impair insulin s... more Mutations in the genes encoding hepatocyte nuclear factor 4α (HNF-4α) and HNF-1α impair insulin secretion and cause maturity onset diabetes of the young (MODY). HNF-4α is known to be an essential positive regulator of HNF-1α. More recent data demonstrates that HNF-4α expression is dependent on HNF-1α in mouse pancreatic islets and exocrine cells. This effect is mediated by binding of HNF-1α to a tissue-specific promoter (P2) located 45.6 kb upstream from the previously characterized Hnf4α promoter (P1). Here we report that the expression of HNF-4α in human islets and exocrine cells is primarily mediated by the P2 promoter. Furthermore, we describe a G → A mutation in a conserved nucleotide position of the HNF-1α binding site of the P2 promoter, which cosegregates with MODY. The mutation results in decreased affinity for HNF-1α, and consequently in reduced HNF-1α-dependent activation. These findings provide genetic evidence that HNF-1α serves as an upstream regulator of HNF-4α and interacts directly with the P2 promoter in human pancreatic cells. Furthermore, they indicate that this regulation is essential to maintain normal pancreatic function.
Journal of Biological Chemistry, 2006
Adipogenesis is regulated by a coordinated cascade of sequencespecific transcription factors and ... more Adipogenesis is regulated by a coordinated cascade of sequencespecific transcription factors and coregulators with chromatinmodifying activities that are between them responsible for the establishment of the gene expression pattern of mature adipocytes. Here we examine the histone H3 post-translational modifications occurring at the promoters of key adipogenic genes during adipocyte differentiation. We show that the promoters of apM1, glut4, gpd1, and leptin are enriched in dimethylated histone H3 Lys 4 (H3-K4) in 3T3-L1 fibroblasts, where none of these genes are yet expressed. A detailed study of the apM1 locus shows that H3-K4 dimethylation is restricted to the promoter region in undifferentiated cells and associates with RNA polymerase II (pol II) loading. The beginning of apM1 transcription at the early stages of adipogenesis coincides with promoter H3 hyperacetylation and H3-K4 trimethylation. At the coding region, H3 acetylation and dimethylation, as well as pol II binding, are found in cells at later stages of differentiation, when apM1 transcription reaches its maximal peak. This same pattern of histone modifications is detected in mouse primary preadipocytes and adipocytes but not in a related fibroblast cell line that is not committed to an adipocyte fate. Inhibition of H3-K4 methylation by treatment of 3T3-L1 cells with methylthioadenosine results in decreased apM1 gene expression as well as decreased adipogenesis. Taken together, our data indicate that H3-K4 dimethylation and pol II binding to the promoter of key adipogenic genes are distinguishing marks of cells that have undergone determination to a preadipocyte stage.
International Journal of Molecular Sciences
Most cells release extracellular vesicles (EVs) that can be detected circulating in blood. We and... more Most cells release extracellular vesicles (EVs) that can be detected circulating in blood. We and others have shown that the microRNA contents of these vesicles induce transcriptomic changes in acceptor cells, contributing to the adjustment of metabolic homeostasis in response to environmental demands. Here, we explore the potential for modulating obesity- and exercise-derived EV-microRNAs to treat the metabolic dysfunction associated with obesity in mice. Treatment with EV-miRNAs alleviated glucose intolerance and insulin resistance in obese mice to an extent similar to that of high-intensity interval training, although only exercise improved cardiorespiratory fitness and decreased body weight. Mechanistically, EV-miRNAs decreased fatty acid and cholesterol biosynthesis pathways in the liver, reducing hepatic steatosis and increasing insulin sensitivity, resulting in decreased glycemia and triglyceridemia. Our data suggest that manipulation of EV-miRNAs may be a viable strategy to ...
Scientific Reports, 2021
Amyloid deposits in pancreatic islets, mainly formed by human islet amyloid polypeptide (hIAPP) a... more Amyloid deposits in pancreatic islets, mainly formed by human islet amyloid polypeptide (hIAPP) aggregation, have been associated with loss of β-cell mass and function, and are a pathological hallmark of type 2 diabetes (T2D). Treatment with chaperones has been associated with a decrease in endoplasmic reticulum stress leading to improved glucose metabolism. The aim of this work was to investigate whether the chemical chaperone 4-phenylbutyrate (PBA) prevents glucose metabolism abnormalities and amyloid deposition in obese agouti viable yellow (Avy) mice that overexpress hIAPP in β cells (Avy hIAPP mice), which exhibit overt diabetes. Oral PBA treatment started at 8 weeks of age, when Avy hIAPP mice already presented fasting hyperglycemia, glucose intolerance, and impaired insulin secretion. PBA treatment strongly reduced the severe hyperglycemia observed in obese Avy hIAPP mice in fasting and fed conditions throughout the study. This effect was paralleled by a decrease in hyperinsu...
Molecular Metabolism, 2021
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Innovative biomarkers are needed to improve the management of patients with type 2 diabetes melli... more Innovative biomarkers are needed to improve the management of patients with type 2 diabetes mellitus (T2DM). Blood circulating miRNAs have been proposed as a potential tool to detect T2DM complications but the lack of tissue specificity, among other reasons, has hampered their translation to clinical settings. Extracellular vesicle (EV)-shuttled miRNAs have been proposed as an alternative approach. Here, we adapted an immunomagnetic bead-based method to isolate plasma CD31 positive (+) EVs to harvest vesicles deriving from tissues relevant for T2DM complications. Surface marker characterization showed that CD31+ EVs were also positive for a range of markers typical of both platelets and activated endothelial cells. After characterization, we quantified 11 candidate miRNAs associated with vascular performance and shuttled by CD31+EVs in a large (n=218), cross-sectional cohort of patients categorized as T2DM without complications, T2DM with complications, and controls. We found that 1...
Proceedings of the National Academy of Sciences, 2018
Significance The presence of extracellular miRNAs in body fluids has been exploited as a brand-ne... more Significance The presence of extracellular miRNAs in body fluids has been exploited as a brand-new source of biomarkers for different diseases. A fraction of those extracellular miRNAs, contained in extracellular vesicles and exosomes, are additionally being revealed as novel mediators of intercellular communication. Here, we show that systemic injection of exosomes transfected with synthetic miRNAs simulating those enriched in the plasma of obese mice robustly induces glucose intolerance, adipose inflammation, and hepatic steatosis in lean mice. These results support a role for exosomal miRNAs in the modulation of glucose and lipid metabolism in mice and may help us uncover thus far unexplored pathological mechanisms and provide us with novel therapeutic targets.
The FASEB Journal, 2017
Human islet amyloid polypeptide (hIAPP) aggregation is associated with b-cell dysfunction and dea... more Human islet amyloid polypeptide (hIAPP) aggregation is associated with b-cell dysfunction and death in type 2 diabetes (T2D). we aimed to determine whether in vivo treatment with chemical chaperone 4-phenylbutyrate (PBA) ameliorates hIAPP-induced b-cell dysfunction and islet amyloid formation. Oral administration of PBA in hIAPP transgenic (hIAPP Tg) mice expressing hIAPP in pancreatic b cells counteracted impaired glucose homeostasis and restored glucose-stimulated insulin secretion. Moreover, PBA treatment almost completely prevented the transcriptomic alterations observed in hIAPP Tg islets, including the induction of genes related to inflammation. PBA also increased b-cell viability and improved insulin secretion in hIAPP Tg islets cultured under glucolipotoxic conditions. Strikingly, PBA not only prevented but even reversed islet amyloid deposition, pointing to a direct effect of PBA on hIAPP. This was supported by in silico calculations uncovering potential binding sites of PBA to monomeric, dimeric, and pentameric fibrillar structures, and by in vitro assays showing inhibition of hIAPP fibril formation by PBA. Collectively, these results uncover a novel beneficial effect of PBA on glucose homeostasis by restoring b-cell function and preventing amyloid formation in mice expressing hIAPP in b cells, highlighting the therapeutic potential of PBA for the treatment of T2D.
PLOS ONE, 2016
Objective Previous studies have confirmed Slug as a key player in regulating phenotypic changes i... more Objective Previous studies have confirmed Slug as a key player in regulating phenotypic changes in several cell models, however, its role in smooth muscle cells (SMC) has never been assessed. The purpose of this study was to evaluate the expression of Slug during the phenotypic switch of SMC in vitro and throughout the development of vascular remodeling. Methods and Results Slug expression was decreased during both cell-to-cell contact and TGFβ1 induced SMC differentiation. Tumor necrosis factor-α (TNFα), a known inductor of a proliferative/dedifferentiated SMC phenotype, induces the expression of Slug in SMC. Slug knockdown blocked TNFα-induced SMC phenotypic change and significantly reduced both SMC proliferation and migration, while its overexpression blocked the TGFβ1-induced SMC differentiation and induced proliferation and migration. Genome-wide transcriptomic analysis showed that in SMC, Slug knockdown induced changes mainly in genes related to proliferation and migration, indicating that Slug controls these processes in SMC. Notably, Slug expression was significantly up-regulated in lungs of mice using a model of pulmonary hypertension-related vascular remodeling. Highly remodeled human pulmonary arteries also showed an increase of Slug expression compared to less remodeled arteries.
Molecular and Cellular Biology, 2001
Mutations in the gene encoding hepatic nuclear factor 1-α (HNF1-α) cause a subtype of human diabe... more Mutations in the gene encoding hepatic nuclear factor 1-α (HNF1-α) cause a subtype of human diabetes resulting from selective pancreatic β-cell dysfunction. We have analyzed mice lacking HNF1-α to study how this protein controls β-cell-specific transcription in vivo. We show that HNF1-α is essential for the expression of glut2 glucose transporter and L-type pyruvate kinase ( pklr ) genes in pancreatic insulin-producing cells, whereas in liver, kidney, or duodenum tissue, glut2 and pklr expression is maintained in the absence of HNF1-α. HNF1-α nevertheless occupies the endogenous glut2 and pklr promoters in both pancreatic islet and liver cells. However, it is indispensable for hyperacetylation of histones in glut2 and pklr promoter nucleosomes in pancreatic islets but not in liver cells, where glut2 and pklr chromatin remains hyperacetylated in the absence of HNF1-α. In contrast, the phenylalanine hydroxylase promoter requires HNF1-α for transcriptional activity and localized histon...
PLoS ONE, 2014
TCF7L2 is the susceptibility gene for Type 2 diabetes (T2D) with the largest effect on disease ri... more TCF7L2 is the susceptibility gene for Type 2 diabetes (T2D) with the largest effect on disease risk that has been discovered to date. However, the mechanisms by which TCF7L2 contributes to the disease remain largely elusive. In addition, epigenetic mechanisms, such as changes in DNA methylation patterns, might have a role in the pathophysiology of T2D. This study aimed to investigate the differences in terms of DNA methylation profile of TCF7L2 promoter gene between type 2 diabetic patients and age-and Body Mass Index (BMI)-matched controls. We included 93 type 2 diabetic patients that were recently diagnosed for T2D and exclusively on diet (without any pharmacological treatment). DNA was extracted from whole blood and DNA methylation was assessed using the Sequenom EpiTYPER system. Type 2 diabetic patients were more insulin resistant than their matched controls (mean HOMA IR 2.6 vs 1.8 in controls, P,0.001) and had a poorer beta-cell function (mean HOMA B 75.7 vs. 113.6 in controls, P,0.001). Results showed that 59% of the CpGs analyzed in TCF7L2 promoter had significant differences between type 2 diabetic patients and matched controls. In addition, fasting glucose, HOMA-B, HOMA-IR, total cholesterol and LDL-cholesterol correlated with methylation in specific CpG sites of TCF7L2 promoter. After adjustment by age, BMI, gender, physical inactivity, waist circumference, smoking status and diabetes status uniquely fasting glucose, total cholesterol and LDL-cholesterol remained significant. Taken together, newly diagnosed, drug-naïve type 2 diabetic patients display specific epigenetic changes at the TCF7L2 promoter as compared to age-and BMI-matched controls. Methylation in TCF7L2 promoter is further correlated with fasting glucose in peripheral blood DNA, which sheds new light on the role of epigenetic regulation of TCF7L2 in T2D.
Journal of Alzheimers Disease, 2013
The senescence-accelerated SAMP8 mouse is considered a useful non-transgenic model for studying a... more The senescence-accelerated SAMP8 mouse is considered a useful non-transgenic model for studying aspects of progressive cognitive decline and Alzheimer's disease (AD). Using SAMR1 mice as controls, here we explored the effects of 6 months of voluntary wheel running in 10-month-old female SAMP8 mice. Exercise in SAMP8 mice improved phenotypic features associated with premature aging (i.e., skin color and body tremor) and enhanced vascularization and BDNF gene expression in the hippocampus compared with controls. With the aim of identifying genes involved in brain aging responsive to long-term exercise, we performed whole genome microarray studies in hippocampus from sedentary SAMP8 (P8sed), SAMR1 (R1sed), and exercised SAMP8 (P8run) mice. The genes differentially expressed in P8sed versus R1sed were considered as putative aging markers (i) and those differentially expressed in P8run versus P8sed were considered as genes modulated by exercise (ii). Genes differentially expressed in both comparisons (i and ii) were considered as putative aging genes responsive to physical exercise. We identified 34 genes which met both criteria. Gene ontology analysis revealed that they are mainly involved in functions related to extracellular matrix maintenance. Selected genes were validated by real-time quantitative PCR assays, i.e., collagen type 1 alpha 1 (col1a1), collagen type 1 alpha 2 (col1a2), fibromodulin (fmod), prostaglandin D(2) synthase (ptgds), and aldehyde dehydrogenase (Aldh1a2). As a whole, our study suggests that exercise training during adulthood may prevent or delay gene expression alterations and processes associated with hippocampal aging in at-risk subjects.
Journal of Neuroinflammation, 2014
Background: Aging is characterized by a low-grade systemic inflammation that contributes to the p... more Background: Aging is characterized by a low-grade systemic inflammation that contributes to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). However, little knowledge is currently available on the molecular processes leading to chronic neuroinflammation. In this context, recent studies have described the role of chromatin regulators in inflammation and longevity including the REST corepressor (Rcor)-2 factor, which seems to be involved in an inflammatory suppressive program. Methods: To assess the impact of Rcor2 in age-related inflammation, gene expression levels were quantified in different tissues and ages of the spontaneous senescence-accelerated P8 mouse (P8) using the SAMR1 mouse (R1) as a control. Specific siRNA transfection in P8 and R1 astrocyte cultures was used to determine Rcor2 involvement in the modulation of neuroinflammation. The effect of lipopolysaccharide (LPS) treatment on Rcor2 levels and neuroinflammation was analyzed both in vivo and in vitro. Results: P8 mice presented a dramatic decrease in Rcor2 gene expression compared with R1 controls in splenocytes, an alteration also observed in the brain cortex, hippocampus and primary astrocytes of these mice. Rcor2 reduction in astrocytes was accompanied by an increased basal expression of the interleukin (Il)-6 gene. Strikingly, intraperitoneal LPS injection in R1 mice downregulated Rcor2 in the hippocampus, with a concomitant upregulation of tumor necrosis factor (Tnf-α), Il1-β and Il6 genes. A negative correlation between Rcor2 and Il6 gene expression was also verified in LPS-treated C6 glioma cells. Knock down of Rcor2 by siRNA transfection (siRcor2) in R1 astrocytes upregulated Il6 gene expression while siRcor2 further increased Il6 expression in P8 astrocytes. Moreover, LPS activation provoked a further downregulation of Rcor2 and an amplified induction of Il6 in siRcor2-tranfected astrocytes. Conclusions: Data presented here show interplay between Rcor2 downregulation and increased inflammation and suggest that Rcor2 may be a key regulator of inflammaging.
Role of the Adipocyte in Development of Type 2 Diabetes, 2011
Role of the Adipocyte in Development of Type 2 Diabetes 66 variety of inflammatory mediators that... more Role of the Adipocyte in Development of Type 2 Diabetes 66 variety of inflammatory mediators that on the one hand attract leukocytes and platelets to the affected site, and on the other hand activate the endothelial cells, increasing their permeability to leukocytes (specifically neutrophils) while avoiding extravasation of erythrocytes (Medzhitov, 2008). The concluding stage of inflammation is resolution, mediated mainly by the tissue resident macrophages that secrete anti-inflammatory mediators to inhibit further recruitment of neutrophils while favoring that of monocytes that remove dead cells and participate in tissue repair and remodeling (Medzhitov, 2008). If resolution is not forthcoming, chronic inflammation ensues, ultimately resulting in tissue damage and metabolic demise of the organism. Obesity is nowadays being accepted as a state of chronic low-grade inflammation (Xu et al., 2003; Weisberg et al., 2006). This inflammatory state impacts the function of many organs and tissues, from the adipose tissue itself to the endothelium, the central nervous system, the pancreas or the liver, and is being recognized as etiological of the aging process.
Muscle & Nerve, 2011
The protein kinase product of the gene mutated in myotonic dystrophy 1 (DMPK) is reported to play... more The protein kinase product of the gene mutated in myotonic dystrophy 1 (DMPK) is reported to play a role in cardiac pathophysiology. To gain insight into the molecular mechanisms modulated by DMPK, we characterize the impact of DMPK ablation in the context of cardiac β‐adrenergic function. Our data demonstrate that DMPK knockout mice present altered β‐agonist–induced responses and suggest that this is due, at least in part, to a reduced density of β1‐adrenergic receptors in cardiac plasma membranes. Muscle Nerve 45: 128–130, 2012
The Journal of clinical endocrinology and metabolism, Jan 22, 2014
Context: Diabetes is frequently diagnosed late, when the development of complications is almost i... more Context: Diabetes is frequently diagnosed late, when the development of complications is almost inevitable, decreasing the quality of life of patients. However, early detection of affected individuals would allow the implementation of timely and effective therapies. Objective: Here we set to describe the profile of circulating microRNAs in prediabetic patients with the intention of identifying novel diagnostic and therapeutic tools. Design: We used real-time RT-PCR to measure the abundance of 176 miRNAs in serum of a cohort of 92 control and prediabetic individuals with either impaired fasting glucose or impaired glucose tolerance, as well as newly diagnosed diabetic patients. We validated the results in a second cohort of control and prediabetic subjects undergoing a therapeutic exercise intervention, as well as in a mouse model of glucose intolerance. Results: We identified two miRNAs, miR-192 and miR-193b, whose abundance is significantly increased in the prediabetic state but no...
Proceedings of the National Academy of Sciences, 2001
Mutations in the human genes encoding hepatocyte nuclear factors (HNF) 1α, 1β, 4α, and IPF1(PDX1/... more Mutations in the human genes encoding hepatocyte nuclear factors (HNF) 1α, 1β, 4α, and IPF1(PDX1/IDX1/STF1) result in pancreatic β cell dysfunction and diabetes mellitus. In hepatocytes, hnf4α controls the transcription of hnf1α , suggesting that this same interaction may operate in β cells and thus account for the common diabetic phenotype. We show that, in pancreatic islet and exocrine cells, hnf4α expression unexpectedly depends on hnf1α . This effect is tissue-specific and mediated through direct occupation by hnf1α of an alternate promoter located 45.6 kb from the previously characterized hnf4α promoter. Hnf1α also exerts direct control of pancreatic-specific expression of hnf4 γ and hnf3γ . Hnf1α dependence of hnf4α , hnf4γ , hnf3γ , and two previously characterized distal targets ( glut2 and pklr ) is established only after differentiated cells arise during pancreatic embryonic development. These studies define an unexpected hierarchical regulatory relationship between two ge...
PLoS ONE, 2013
GIP action in type 2 diabetic (T2D) patients is altered. We hypothesized that methylation changes... more GIP action in type 2 diabetic (T2D) patients is altered. We hypothesized that methylation changes could be present in GIP receptor of T2D patients. This study aimed to assess the differences in DNA methylation profile of GIPR promoter between T2D patients and age-and Body Mass Index (BMI)-matched controls. We included 93 T2D patients (cases) that were uniquely on diet (without any anti-diabetic pharmacological treatment). We matched one control (with oral glucose tolerance test negative, non diabetic), by age and BMI, for every case. Cytokines and hormones were determined by ELISA. DNA was extracted from whole blood and DNA methylation was assessed using the Sequenom EpiTYPER system. Our results showed that T2D patients were more insulin resistant and had a poorer b cell function than their controls. Fasting adiponectin was lower in T2D patients as compared to controls (7.063.8 mgr/mL vs. 10.064.2 mgr/mL). Levels of IL 12 in serum were almost double in T2D patients (52.8658.3 pg/mL vs. 29.7637.4 pg/mL). We found that GIPR promoter was hypomethylated in T2D patients as compared to controls. In addition, HOMA-IR and fasting glucose correlated negatively with mean methylation of GIPR promoter, especially in T2D patients. This case-control study confirms that newly diagnosed, drug-naïve T2D patients are more insulin resistant and have worse b cell function than age-and BMI-matched controls, which is partly related to changes in the insulin-sensitizing metabolites (adiponectin), in the proinflammatory profile (IL12) and we suggest in the methylation pattern of GIPR. Our study provides novel findings on GIPR promoter methylation profile which may improve our ability to understand type 2 diabetes pathogenesis.
Journal of Hepatology, 2005
Selective cyclooxygenase (COX)-2 inhibitors do not adversely affect renal function in experimenta... more Selective cyclooxygenase (COX)-2 inhibitors do not adversely affect renal function in experimental cirrhosis. In the current study, we investigated the molecular mechanisms underlying the effects of the selective COX-2 inhibitor, celecoxib, and assessed the influence of albumin on its actions. Rat mesangial cells (RMC) were incubated with celecoxib in the absence or presence of albumin, and levels of selected vasoconstrictor eicosanoids, renin release and alpha-smooth muscle actin (alpha-SMA) expression were determined. The effects of celecoxib on PPARgamma were assessed in RMC co-transfected with PPARgamma and luciferase reporter constructs. Under resting conditions, RMC expressed COX-1, COX-2 and 12/15-lipoxygenase and mainly generated prostaglandin (PG)E2, thromboxane (TX)B2, 12-hydroxyeicosatetraenoic acid (12-HETE) and 8-epi-PGF2alpha. Celecoxib, in addition to reducing PGE2, significantly decreased 8-epi-PGF2alpha formation. In the presence of albumin, celecoxib also reduced TXB2 and 12-HETE. Albumin per se inhibited PGE2 as well as renin release. In trans-activation assays, celecoxib acted as a PPARgamma agonist whereas albumin inhibited PPARgamma as well as 15d-PGJ2-induced PPARgamma activation. Finally, celecoxib and albumin potentiated the inhibitory effect of 15d-PGJ2 on alpha-SMA expression. These data provide novel molecular mechanisms of celecoxib and their modulation by albumin, that may be relevant to prevent renal dysfunction in conditions of unbalanced effective blood volume.
Journal of Clinical Investigation, 2002
Mutations in the genes encoding hepatocyte nuclear factor 4α (HNF-4α) and HNF-1α impair insulin s... more Mutations in the genes encoding hepatocyte nuclear factor 4α (HNF-4α) and HNF-1α impair insulin secretion and cause maturity onset diabetes of the young (MODY). HNF-4α is known to be an essential positive regulator of HNF-1α. More recent data demonstrates that HNF-4α expression is dependent on HNF-1α in mouse pancreatic islets and exocrine cells. This effect is mediated by binding of HNF-1α to a tissue-specific promoter (P2) located 45.6 kb upstream from the previously characterized Hnf4α promoter (P1). Here we report that the expression of HNF-4α in human islets and exocrine cells is primarily mediated by the P2 promoter. Furthermore, we describe a G → A mutation in a conserved nucleotide position of the HNF-1α binding site of the P2 promoter, which cosegregates with MODY. The mutation results in decreased affinity for HNF-1α, and consequently in reduced HNF-1α-dependent activation. These findings provide genetic evidence that HNF-1α serves as an upstream regulator of HNF-4α and interacts directly with the P2 promoter in human pancreatic cells. Furthermore, they indicate that this regulation is essential to maintain normal pancreatic function.
Journal of Biological Chemistry, 2006
Adipogenesis is regulated by a coordinated cascade of sequencespecific transcription factors and ... more Adipogenesis is regulated by a coordinated cascade of sequencespecific transcription factors and coregulators with chromatinmodifying activities that are between them responsible for the establishment of the gene expression pattern of mature adipocytes. Here we examine the histone H3 post-translational modifications occurring at the promoters of key adipogenic genes during adipocyte differentiation. We show that the promoters of apM1, glut4, gpd1, and leptin are enriched in dimethylated histone H3 Lys 4 (H3-K4) in 3T3-L1 fibroblasts, where none of these genes are yet expressed. A detailed study of the apM1 locus shows that H3-K4 dimethylation is restricted to the promoter region in undifferentiated cells and associates with RNA polymerase II (pol II) loading. The beginning of apM1 transcription at the early stages of adipogenesis coincides with promoter H3 hyperacetylation and H3-K4 trimethylation. At the coding region, H3 acetylation and dimethylation, as well as pol II binding, are found in cells at later stages of differentiation, when apM1 transcription reaches its maximal peak. This same pattern of histone modifications is detected in mouse primary preadipocytes and adipocytes but not in a related fibroblast cell line that is not committed to an adipocyte fate. Inhibition of H3-K4 methylation by treatment of 3T3-L1 cells with methylthioadenosine results in decreased apM1 gene expression as well as decreased adipogenesis. Taken together, our data indicate that H3-K4 dimethylation and pol II binding to the promoter of key adipogenic genes are distinguishing marks of cells that have undergone determination to a preadipocyte stage.