Mark Krasnow - Academia.edu (original) (raw)
Papers by Mark Krasnow
<div><p>(A) Results of quantitative real-time RT-PCR of indicated genes using RNA fro... more <div><p>(A) Results of quantitative real-time RT-PCR of indicated genes using RNA from <i>y w FRT<sup>19A</sup>/Y</i> (WT), <i>Upf2<sup>25G</sup>/Y,</i> and <i>Smg1<sup>32AP</sup>/Y</i> L3 larvae carrying one copy of <i>da-GAL4</i> and <i>UAS-CD8:GFP</i>. Amplifications of replicate reactions were individually normalized to internal control reactions with <i>rp18LA</i>. Values shown are means ± 2 standard errors of the mean relative to the results with <i>y w FRT<sup>19A</sup>/Y</i>. GFP RNA levels in these larvae (see <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.0020180#pgen-0020180-g001" target="_blank">Figure 1</a>H) are included for comparison. EK, photoshop-independent control gene defined by expressed sequence tag EK161155.</p><p>(B) Effect on <i>tra</i> RNA levels in females. Above are shown sex-specific splice patterns in the coding portion of the <i>tra</i> transcript. Males use splice pathway shown below line to produce traL, whereas females use both splice pathways to produce traL and traS. traS encodes a 197-residue protein, whereas traL contains an early termination codon and encodes a 37-residue protein. Arrows, position of PCR primers used to simultaneously amplify traL (364-bp product) and traS (189 bp). Bottom left shows RT-PCR on RNA from heterozygous <i>Upf2<sup>25G</sup>/+</i> and homozygous <i>Upf2<sup>25G</sup></i> female larvae; aliquots of reaction were taken at PCR cycles indicated. Note increased traL in <i>Upf2<sup>25G</sup></i> homozygotes. Bottom right shows quantification of results after 30 PCR cycles. Areas of the peaks are indicated, normalized to traS peak. These and similar experiments (not shown) indicate traL is increased ~10-fold in <i>Upf2<sup>25G</sup></i> mutants. This was greater than the value measured for <i>Upf2<sup>25G</sup></i> mutant males (~4-fold; <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.0020180#pgen-0020180-st001" target="_blank">Table S1</a>; <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.0020180#pgen-0020180-g005" target="_blank">Figure 5</a>A), perhaps due to sex-specific differences in NMD or differences in sensitivity of the assays.</p></div
ABSTRACTOrgan- and body-scale cell atlases have the potential to transform our understanding of h... more ABSTRACTOrgan- and body-scale cell atlases have the potential to transform our understanding of human biology. To capture the variability present in the population, these atlases must include diverse demographics such as age and ethnicity from both healthy and diseased individuals. The growth in both size and number of single-cell datasets, combined with recent advances in computational techniques, for the first time makes it possible to generate such comprehensive large-scale atlases through integration of multiple datasets. Here, we present the integrated Human Lung Cell Atlas (HLCA) combining 46 datasets of the human respiratory system into a single atlas spanning over 2.2 million cells from 444 individuals across health and disease. The HLCA contains a consensus re-annotation of published and newly generated datasets, resolving under- or misannotation of 59% of cells in the original datasets. The HLCA enables recovery of rare cell types, provides consensus marker genes for each ...
ABSTRACTMouse lemurs are the smallest, fastest reproducing, and among the most abundant primates,... more ABSTRACTMouse lemurs are the smallest, fastest reproducing, and among the most abundant primates, and an emerging model organism for primate biology, behavior, health and conservation. Although much has been learned about their physiology and their Madagascar ecology and phylogeny, little is known about their cellular and molecular biology. Here we used droplet- and plate-based single cell RNA-sequencing to profile 226,000 cells from 27 mouse lemur organs and tissues opportunistically procured from four donors clinically and histologically characterized. Using computational cell clustering, integration, and expert cell annotation, we defined and biologically organized over 750 mouse lemur molecular cell types and their full gene expression profiles. These include cognates of most classical human cell types, including stem and progenitor cells, and the developmental programs for spermatogenesis, hematopoiesis, and other adult tissues. We also described dozens of previously unidentifi...
Oxygen passes along the ramifying branches of the lung’s bronchial tree and enters the blood thro... more Oxygen passes along the ramifying branches of the lung’s bronchial tree and enters the blood through millions of tiny, thin-walled gas exchange sacs called alveoli. Classical histological studies have suggested that alveoli arise late in development by a septation process that subdivides large air sacs into smaller compartments. Although a critical role has been proposed for contractile myofibroblasts, the mechanism of alveolar patterning and morphogenesis is not well understood. Here we present the three-dimensional cellular structure of alveoli, and show using single-cell labeling and deep imaging that an alveolus in the mouse lung is composed of just 2 epithelial cells and a total of a dozen cells of 7 different types, each with a remarkable, distinctive structure. By mapping alveolar development at cellular resolution at a specific position in the branch lineage, we find that alveoli form surprisingly early by direct budding of epithelial cells out from the airway stalk between ...
Hormones coordinate long-range cell-cell communication in multicellular organisms and play vital ... more Hormones coordinate long-range cell-cell communication in multicellular organisms and play vital roles in normal physiology, metabolism, and health. Using the newly-completed organism-wide single cell transcriptional atlas of a non-human primate, the mouse lemur (Microcebus murinus), we have systematically identified hormone-producing and -target cells for 87 classes of hormones, and have created a browsable atlas for hormone signaling that reveals previously unreported sites of hormone regulation and species-specific rewiring. Hormone ligands and receptors exhibited cell-type-dependent, stereotypical expression patterns, and their transcriptional profiles faithfully classified the discrete cell types defined by the full transcriptome, despite their comprising less than 1% of the transcriptome. Although individual cell types generally exhibited the same characteristic patterns of hormonal gene expression, a number of examples of similar or seemingly-identical cell types (e.g., endot...
ABSTRACTInteroceptors, sensory neurons that monitor internal organs and states, are essential for... more ABSTRACTInteroceptors, sensory neurons that monitor internal organs and states, are essential for physiological homeostasis and generating internal perceptions. Here we describe a comprehensive transcriptomic atlas of interoceptors of the mouse lung, defining 10 molecular subtypes that differ in developmental origin, myelination, receptive fields, terminal morphologies, and cell contacts. Each subtype expresses a unique but overlapping combination of sensory receptors that detect diverse physiological and pathological stimuli, and each can signal to distinct sets of lung cells including immune cells, forming a local neuroimmune interaction network. Functional interrogation of two mechanosensory subtypes reveals exquisitely-specific homeostatic roles in breathing, one regulating inspiratory time and the other inspiratory flow. The results suggest that lung interoceptors encode diverse and dynamic sensory information rivaling that of canonical exteroceptors, and this information is us...
Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, Jan 29, 2016
Science, 2002
Molecular genetic studies of Drosophila melanogaster have led to profound advances in understandi... more Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.
PLoS Biology, 2004
To establish a genetic system to study postembryonic wound healing, we characterized epidermal wo... more To establish a genetic system to study postembryonic wound healing, we characterized epidermal wound healing in Drosophila larvae. Following puncture wounding, larvae begin to bleed but within an hour a plug forms in the wound gap. Over the next couple of hours the outer part of the plug melanizes to form a scab, and epidermal cells surrounding the plug orient toward it and then fuse to form a syncytium. Subsequently, more-peripheral cells orient toward and fuse with the central syncytium. During this time, the Jun N-terminal kinase (JNK) pathway is activated in a gradient emanating out from the wound, and the epidermal cells spread along or through the wound plug to reestablish a continuous epithelium and its basal lamina and apical cuticle lining. Inactivation of the JNK pathway inhibits epidermal spreading and reepithelialization but does not affect scab formation or other wound healing responses. Conversely, mutations that block scab formation, and a scabless wounding procedure, provide evidence that the scab stabilizes the wound site but is not required to initiate other wound responses. However, in the absence of a scab, the JNK pathway is hyperinduced, reepithelialization initiates but is not always completed, and a chronic wound ensues. The results demonstrate that the cellular responses of wound healing are under separate genetic control, and that the responses are coordinated by multiple signals emanating from the wound site, including a negative feedback signal between scab formation and the JNK pathway. Cell biological and molecular parallels to vertebrate wound healing lead us to speculate that wound healing is an ancient response that has diversified during evolution.
Journal of Biological Chemistry, 2000
Genes & Development, 1992
Different eukaryotic transcription factors can act through the same upstream binding site to diff... more Different eukaryotic transcription factors can act through the same upstream binding site to differentially regulate target gene expression, but little is known of the underlying mechanisms. Here, we show that Ultrabithorax and even-skipped homeo domain proteins (UBX and EVE) of Drosophila melanogaster exert active and opposite effects on in vitro transcription when bound to a common site upstream of a core promoter. Both the activator UBX and the repressor EVE affect the extent but not the rate constant of preinitiation complex (preIC) formation. Both regulators act early in preIC assembly and are dispensable later. Assembling complexes become resistant to regulation by the bound proteins, but activation by UBX is restored upon ATP or dATP addition, and regulation by both proteins is restored after the addition of all four nucleoside triphosphates and transcription initiation. The results establish that upstream activators and repressors can function by fundamentally similar mechan...
Science, 2008
During Drosophila metamorphosis, most larval cells die. Pupal and adult tissues form from imagina... more During Drosophila metamorphosis, most larval cells die. Pupal and adult tissues form from imaginal cells, tissue-specific progenitors allocated in embryogenesis that remain quiescent during embryonic and larval life. Clonal analysis and fate mapping of single, identified cells show that tracheal system remodeling at metamorphosis involves a classical imaginal cell population and a population of differentiated, functional larval tracheal cells that reenter the cell cycle and regain developmental potency. In late larvae, both populations are activated and proliferate, spread over and replace old branches, and diversify into various stalk and coiled tracheolar cells under control of fibroblast growth factor signaling. Thus, Drosophila pupal/adult tissue progenitors can arise both by early allocation of multipotent cells and late return of differentiated cells to a multipotent state, even within a single tissue.
Development, 2006
Drosophila Corkscrew protein and its vertebrate ortholog SHP-2(now known as Ptpn11) positively mo... more Drosophila Corkscrew protein and its vertebrate ortholog SHP-2(now known as Ptpn11) positively modulate receptor tyrosine kinase (RTK)signaling during development, but how these tyrosine phosphatases promote tyrosine kinase signaling is not well understood. Sprouty proteins are tyrosine-phosphorylated RTK feedback inhibitors, but their regulation and mechanism of action are also poorly understood. Here, we show that Corkscrew/SHP-2 proteins control Sprouty phosphorylation and function. Genetic experiments demonstrate that Corkscrew/SHP-2 and Sprouty proteins have opposite effects on RTK-mediated developmental events in Drosophilaand an RTK signaling process in cultured mammalian cells, and the genes display dose-sensitive genetic interactions. In cultured cells, inactivation of SHP-2 increases phosphorylation on the critical tyrosine of Sprouty 1. SHP-2 associates in a complex with Sprouty 1 in cultured cells and in vitro,and a purified SHP-2 protein dephosphorylates the critical ty...
Developmental Cell, 2012
Some of the most serious diseases involve altered size and structure of the arterial wall. Elucid... more Some of the most serious diseases involve altered size and structure of the arterial wall. Elucidating how arterial walls are built could aid understanding of these diseases, but little is known about how concentric layers of muscle cells and the outer adventitial layer are assembled and patterned around endothelial tubes. Using histochemical, clonal, and genetic analysis in mice, here we show that the pulmonary artery wall is constructed radially, from the inside out, by two separate but coordinated processes. One is sequential induction of successive cell layers from surrounding mesenchyme. The other is controlled invasion of outer layers by inner layer cells through developmentally regulated cell reorientation and radial migration. We propose that a radial signal gradient controls these processes and provide evidence that PDGF-B and at least one other signal contribute. Modulation of such radial signaling pathways may underlie vessel-specific differences and pathological changes in arterial wall size and structure.
Development, 1996
We identified a Drosophila gene, pruned, that regulates formation of the terminal branches of the... more We identified a Drosophila gene, pruned, that regulates formation of the terminal branches of the tracheal (respiratory) system. These branches arise by extension of long cytoplasmic processes from terminal tracheal cells towards oxygen-starved tissues, followed by formation of a lumen within the processes. The pruned gene is expressed in terminal cells throughout the period of terminal branching. pruned encodes the Drosophila homologue of serum response factor (SRF), which functions with an ETS domain ternary complex factor as a growth-factor-activated transcription complex in mammalian cells. In pruned loss of function mutants, terminal cells fail to extend cytoplasmic projections. A constitutively activated SRF drives formation of extra projections that grow out in an unregulated fashion. An activated ternary complex factor has a similar effect. We propose that the Drosophila SRF functions like mammalian SRF in an inducible transcription complex, and that activation of this compl...
Development, 2001
During development of the Drosophila tracheal (respiratory) system, the cell bodies and apical an... more During development of the Drosophila tracheal (respiratory) system, the cell bodies and apical and basal surfaces of the tracheal epithelium normally move in concert as new branches bud and grow out to form tubes. We show that mutations in the Drosophila ribbon (rib) gene disrupt this coupling: the basal surface continues to extend towards its normal targets, but movement and morphogenesis of the tracheal cell bodies and apical surface is severely impaired, resulting in long basal membrane protrusions but little net movement or branch formation. rib mutant tracheal cells are still responsive to the Branchless fibroblast growth factor (FGF) that guides branch outgrowth, and they express apical membrane markers normally. This suggests that the defect lies either in transmission of the FGF signal from the basal surface to the rest of the cell or in the apical cell migration and tubulogenesis machinery. rib encodes a nuclear protein with a BTB/POZ domain and Pipsqueak DNA-binding motif....
Development, 1996
During development of tubular networks such as the mammalian vascular system, the kidney and the ... more During development of tubular networks such as the mammalian vascular system, the kidney and the Drosophila tracheal system, epithelial tubes must fuse to each other to form a continuous network. Little is known of the cellular mechanisms or molecular control of epithelial tube fusion. We describe the cellular dynamics of a tracheal fusion event in Drosophila and identify a gene regulatory hierarchy that controls this extraordinary process. A tracheal cell located at the developing fusion point expresses a sequence of specific markers as it grows out and contacts a similar cell from another tube; the two cells adhere and form an intercellular junction, and they become doughnut-shaped cells with the lumen passing through them. The early fusion marker Fusion-1 is identified as the escargot gene. It lies near the top of the regulatory hierarchy, activating the expression of later fusion markers and repressing genes that promote branching. Ectopic expression of escargot activates the fu...
The proper size of epithelial tubes is critical for the function of the lung, kidney, vascular sy... more The proper size of epithelial tubes is critical for the function of the lung, kidney, vascular system and other organs, but the genetic and cellular mechanisms that control epithelial tube size are unknown. We investigated tube size control in the embryonic and larval tracheal (respiratory) system of Drosophila. A morphometric analysis showed that primary tracheal branches have characteristic sizes that undergo programmed changes during development. Branches grow at different rates and their diameters and lengths are regulated independently: tube length increases gradually throughout development, whereas tube diameter increases abruptly at discrete times in development. Cellular analysis and manipulation of tracheal cell number using cell-cycle mutations demonstrated that tube size is not dictated by the specific number or shape of the tracheal cells that constitute it. Rather, tube size appears to be controlled by coordinately regulating the apical (lumenal) surface of tracheal cel...
The outcomes of patients with SCLC have not yet been substantially impacted by the revolution in ... more The outcomes of patients with SCLC have not yet been substantially impacted by the revolution in precision oncology, primarily owing to a paucity of genetic alterations in actionable driver oncogenes. Nevertheless, systemic therapies that include immunotherapy are beginning to show promise in the clinic. Although, these results are encouraging, many patients do not respond to, or rapidly recur after, current regimens, necessitating alternative or complementary therapeutic strategies. In this review, we discuss ongoing investigations into the pathobiology of this recalcitrant cancer and the therapeutic vulnerabilities that are exposed by the disease state. Included within this discussion, is a snapshot of the current biomarker and clinical trial landscapes for SCLC. Finally, we identify key knowledge gaps that should be addressed to advance the field in pursuit of reduced SCLC mortality. This review largely summarizes work presented at the Third Biennial International Association for...
<div><p>(A) Results of quantitative real-time RT-PCR of indicated genes using RNA fro... more <div><p>(A) Results of quantitative real-time RT-PCR of indicated genes using RNA from <i>y w FRT<sup>19A</sup>/Y</i> (WT), <i>Upf2<sup>25G</sup>/Y,</i> and <i>Smg1<sup>32AP</sup>/Y</i> L3 larvae carrying one copy of <i>da-GAL4</i> and <i>UAS-CD8:GFP</i>. Amplifications of replicate reactions were individually normalized to internal control reactions with <i>rp18LA</i>. Values shown are means ± 2 standard errors of the mean relative to the results with <i>y w FRT<sup>19A</sup>/Y</i>. GFP RNA levels in these larvae (see <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.0020180#pgen-0020180-g001" target="_blank">Figure 1</a>H) are included for comparison. EK, photoshop-independent control gene defined by expressed sequence tag EK161155.</p><p>(B) Effect on <i>tra</i> RNA levels in females. Above are shown sex-specific splice patterns in the coding portion of the <i>tra</i> transcript. Males use splice pathway shown below line to produce traL, whereas females use both splice pathways to produce traL and traS. traS encodes a 197-residue protein, whereas traL contains an early termination codon and encodes a 37-residue protein. Arrows, position of PCR primers used to simultaneously amplify traL (364-bp product) and traS (189 bp). Bottom left shows RT-PCR on RNA from heterozygous <i>Upf2<sup>25G</sup>/+</i> and homozygous <i>Upf2<sup>25G</sup></i> female larvae; aliquots of reaction were taken at PCR cycles indicated. Note increased traL in <i>Upf2<sup>25G</sup></i> homozygotes. Bottom right shows quantification of results after 30 PCR cycles. Areas of the peaks are indicated, normalized to traS peak. These and similar experiments (not shown) indicate traL is increased ~10-fold in <i>Upf2<sup>25G</sup></i> mutants. This was greater than the value measured for <i>Upf2<sup>25G</sup></i> mutant males (~4-fold; <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.0020180#pgen-0020180-st001" target="_blank">Table S1</a>; <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.0020180#pgen-0020180-g005" target="_blank">Figure 5</a>A), perhaps due to sex-specific differences in NMD or differences in sensitivity of the assays.</p></div
ABSTRACTOrgan- and body-scale cell atlases have the potential to transform our understanding of h... more ABSTRACTOrgan- and body-scale cell atlases have the potential to transform our understanding of human biology. To capture the variability present in the population, these atlases must include diverse demographics such as age and ethnicity from both healthy and diseased individuals. The growth in both size and number of single-cell datasets, combined with recent advances in computational techniques, for the first time makes it possible to generate such comprehensive large-scale atlases through integration of multiple datasets. Here, we present the integrated Human Lung Cell Atlas (HLCA) combining 46 datasets of the human respiratory system into a single atlas spanning over 2.2 million cells from 444 individuals across health and disease. The HLCA contains a consensus re-annotation of published and newly generated datasets, resolving under- or misannotation of 59% of cells in the original datasets. The HLCA enables recovery of rare cell types, provides consensus marker genes for each ...
ABSTRACTMouse lemurs are the smallest, fastest reproducing, and among the most abundant primates,... more ABSTRACTMouse lemurs are the smallest, fastest reproducing, and among the most abundant primates, and an emerging model organism for primate biology, behavior, health and conservation. Although much has been learned about their physiology and their Madagascar ecology and phylogeny, little is known about their cellular and molecular biology. Here we used droplet- and plate-based single cell RNA-sequencing to profile 226,000 cells from 27 mouse lemur organs and tissues opportunistically procured from four donors clinically and histologically characterized. Using computational cell clustering, integration, and expert cell annotation, we defined and biologically organized over 750 mouse lemur molecular cell types and their full gene expression profiles. These include cognates of most classical human cell types, including stem and progenitor cells, and the developmental programs for spermatogenesis, hematopoiesis, and other adult tissues. We also described dozens of previously unidentifi...
Oxygen passes along the ramifying branches of the lung’s bronchial tree and enters the blood thro... more Oxygen passes along the ramifying branches of the lung’s bronchial tree and enters the blood through millions of tiny, thin-walled gas exchange sacs called alveoli. Classical histological studies have suggested that alveoli arise late in development by a septation process that subdivides large air sacs into smaller compartments. Although a critical role has been proposed for contractile myofibroblasts, the mechanism of alveolar patterning and morphogenesis is not well understood. Here we present the three-dimensional cellular structure of alveoli, and show using single-cell labeling and deep imaging that an alveolus in the mouse lung is composed of just 2 epithelial cells and a total of a dozen cells of 7 different types, each with a remarkable, distinctive structure. By mapping alveolar development at cellular resolution at a specific position in the branch lineage, we find that alveoli form surprisingly early by direct budding of epithelial cells out from the airway stalk between ...
Hormones coordinate long-range cell-cell communication in multicellular organisms and play vital ... more Hormones coordinate long-range cell-cell communication in multicellular organisms and play vital roles in normal physiology, metabolism, and health. Using the newly-completed organism-wide single cell transcriptional atlas of a non-human primate, the mouse lemur (Microcebus murinus), we have systematically identified hormone-producing and -target cells for 87 classes of hormones, and have created a browsable atlas for hormone signaling that reveals previously unreported sites of hormone regulation and species-specific rewiring. Hormone ligands and receptors exhibited cell-type-dependent, stereotypical expression patterns, and their transcriptional profiles faithfully classified the discrete cell types defined by the full transcriptome, despite their comprising less than 1% of the transcriptome. Although individual cell types generally exhibited the same characteristic patterns of hormonal gene expression, a number of examples of similar or seemingly-identical cell types (e.g., endot...
ABSTRACTInteroceptors, sensory neurons that monitor internal organs and states, are essential for... more ABSTRACTInteroceptors, sensory neurons that monitor internal organs and states, are essential for physiological homeostasis and generating internal perceptions. Here we describe a comprehensive transcriptomic atlas of interoceptors of the mouse lung, defining 10 molecular subtypes that differ in developmental origin, myelination, receptive fields, terminal morphologies, and cell contacts. Each subtype expresses a unique but overlapping combination of sensory receptors that detect diverse physiological and pathological stimuli, and each can signal to distinct sets of lung cells including immune cells, forming a local neuroimmune interaction network. Functional interrogation of two mechanosensory subtypes reveals exquisitely-specific homeostatic roles in breathing, one regulating inspiratory time and the other inspiratory flow. The results suggest that lung interoceptors encode diverse and dynamic sensory information rivaling that of canonical exteroceptors, and this information is us...
Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, Jan 29, 2016
Science, 2002
Molecular genetic studies of Drosophila melanogaster have led to profound advances in understandi... more Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.
PLoS Biology, 2004
To establish a genetic system to study postembryonic wound healing, we characterized epidermal wo... more To establish a genetic system to study postembryonic wound healing, we characterized epidermal wound healing in Drosophila larvae. Following puncture wounding, larvae begin to bleed but within an hour a plug forms in the wound gap. Over the next couple of hours the outer part of the plug melanizes to form a scab, and epidermal cells surrounding the plug orient toward it and then fuse to form a syncytium. Subsequently, more-peripheral cells orient toward and fuse with the central syncytium. During this time, the Jun N-terminal kinase (JNK) pathway is activated in a gradient emanating out from the wound, and the epidermal cells spread along or through the wound plug to reestablish a continuous epithelium and its basal lamina and apical cuticle lining. Inactivation of the JNK pathway inhibits epidermal spreading and reepithelialization but does not affect scab formation or other wound healing responses. Conversely, mutations that block scab formation, and a scabless wounding procedure, provide evidence that the scab stabilizes the wound site but is not required to initiate other wound responses. However, in the absence of a scab, the JNK pathway is hyperinduced, reepithelialization initiates but is not always completed, and a chronic wound ensues. The results demonstrate that the cellular responses of wound healing are under separate genetic control, and that the responses are coordinated by multiple signals emanating from the wound site, including a negative feedback signal between scab formation and the JNK pathway. Cell biological and molecular parallels to vertebrate wound healing lead us to speculate that wound healing is an ancient response that has diversified during evolution.
Journal of Biological Chemistry, 2000
Genes & Development, 1992
Different eukaryotic transcription factors can act through the same upstream binding site to diff... more Different eukaryotic transcription factors can act through the same upstream binding site to differentially regulate target gene expression, but little is known of the underlying mechanisms. Here, we show that Ultrabithorax and even-skipped homeo domain proteins (UBX and EVE) of Drosophila melanogaster exert active and opposite effects on in vitro transcription when bound to a common site upstream of a core promoter. Both the activator UBX and the repressor EVE affect the extent but not the rate constant of preinitiation complex (preIC) formation. Both regulators act early in preIC assembly and are dispensable later. Assembling complexes become resistant to regulation by the bound proteins, but activation by UBX is restored upon ATP or dATP addition, and regulation by both proteins is restored after the addition of all four nucleoside triphosphates and transcription initiation. The results establish that upstream activators and repressors can function by fundamentally similar mechan...
Science, 2008
During Drosophila metamorphosis, most larval cells die. Pupal and adult tissues form from imagina... more During Drosophila metamorphosis, most larval cells die. Pupal and adult tissues form from imaginal cells, tissue-specific progenitors allocated in embryogenesis that remain quiescent during embryonic and larval life. Clonal analysis and fate mapping of single, identified cells show that tracheal system remodeling at metamorphosis involves a classical imaginal cell population and a population of differentiated, functional larval tracheal cells that reenter the cell cycle and regain developmental potency. In late larvae, both populations are activated and proliferate, spread over and replace old branches, and diversify into various stalk and coiled tracheolar cells under control of fibroblast growth factor signaling. Thus, Drosophila pupal/adult tissue progenitors can arise both by early allocation of multipotent cells and late return of differentiated cells to a multipotent state, even within a single tissue.
Development, 2006
Drosophila Corkscrew protein and its vertebrate ortholog SHP-2(now known as Ptpn11) positively mo... more Drosophila Corkscrew protein and its vertebrate ortholog SHP-2(now known as Ptpn11) positively modulate receptor tyrosine kinase (RTK)signaling during development, but how these tyrosine phosphatases promote tyrosine kinase signaling is not well understood. Sprouty proteins are tyrosine-phosphorylated RTK feedback inhibitors, but their regulation and mechanism of action are also poorly understood. Here, we show that Corkscrew/SHP-2 proteins control Sprouty phosphorylation and function. Genetic experiments demonstrate that Corkscrew/SHP-2 and Sprouty proteins have opposite effects on RTK-mediated developmental events in Drosophilaand an RTK signaling process in cultured mammalian cells, and the genes display dose-sensitive genetic interactions. In cultured cells, inactivation of SHP-2 increases phosphorylation on the critical tyrosine of Sprouty 1. SHP-2 associates in a complex with Sprouty 1 in cultured cells and in vitro,and a purified SHP-2 protein dephosphorylates the critical ty...
Developmental Cell, 2012
Some of the most serious diseases involve altered size and structure of the arterial wall. Elucid... more Some of the most serious diseases involve altered size and structure of the arterial wall. Elucidating how arterial walls are built could aid understanding of these diseases, but little is known about how concentric layers of muscle cells and the outer adventitial layer are assembled and patterned around endothelial tubes. Using histochemical, clonal, and genetic analysis in mice, here we show that the pulmonary artery wall is constructed radially, from the inside out, by two separate but coordinated processes. One is sequential induction of successive cell layers from surrounding mesenchyme. The other is controlled invasion of outer layers by inner layer cells through developmentally regulated cell reorientation and radial migration. We propose that a radial signal gradient controls these processes and provide evidence that PDGF-B and at least one other signal contribute. Modulation of such radial signaling pathways may underlie vessel-specific differences and pathological changes in arterial wall size and structure.
Development, 1996
We identified a Drosophila gene, pruned, that regulates formation of the terminal branches of the... more We identified a Drosophila gene, pruned, that regulates formation of the terminal branches of the tracheal (respiratory) system. These branches arise by extension of long cytoplasmic processes from terminal tracheal cells towards oxygen-starved tissues, followed by formation of a lumen within the processes. The pruned gene is expressed in terminal cells throughout the period of terminal branching. pruned encodes the Drosophila homologue of serum response factor (SRF), which functions with an ETS domain ternary complex factor as a growth-factor-activated transcription complex in mammalian cells. In pruned loss of function mutants, terminal cells fail to extend cytoplasmic projections. A constitutively activated SRF drives formation of extra projections that grow out in an unregulated fashion. An activated ternary complex factor has a similar effect. We propose that the Drosophila SRF functions like mammalian SRF in an inducible transcription complex, and that activation of this compl...
Development, 2001
During development of the Drosophila tracheal (respiratory) system, the cell bodies and apical an... more During development of the Drosophila tracheal (respiratory) system, the cell bodies and apical and basal surfaces of the tracheal epithelium normally move in concert as new branches bud and grow out to form tubes. We show that mutations in the Drosophila ribbon (rib) gene disrupt this coupling: the basal surface continues to extend towards its normal targets, but movement and morphogenesis of the tracheal cell bodies and apical surface is severely impaired, resulting in long basal membrane protrusions but little net movement or branch formation. rib mutant tracheal cells are still responsive to the Branchless fibroblast growth factor (FGF) that guides branch outgrowth, and they express apical membrane markers normally. This suggests that the defect lies either in transmission of the FGF signal from the basal surface to the rest of the cell or in the apical cell migration and tubulogenesis machinery. rib encodes a nuclear protein with a BTB/POZ domain and Pipsqueak DNA-binding motif....
Development, 1996
During development of tubular networks such as the mammalian vascular system, the kidney and the ... more During development of tubular networks such as the mammalian vascular system, the kidney and the Drosophila tracheal system, epithelial tubes must fuse to each other to form a continuous network. Little is known of the cellular mechanisms or molecular control of epithelial tube fusion. We describe the cellular dynamics of a tracheal fusion event in Drosophila and identify a gene regulatory hierarchy that controls this extraordinary process. A tracheal cell located at the developing fusion point expresses a sequence of specific markers as it grows out and contacts a similar cell from another tube; the two cells adhere and form an intercellular junction, and they become doughnut-shaped cells with the lumen passing through them. The early fusion marker Fusion-1 is identified as the escargot gene. It lies near the top of the regulatory hierarchy, activating the expression of later fusion markers and repressing genes that promote branching. Ectopic expression of escargot activates the fu...
The proper size of epithelial tubes is critical for the function of the lung, kidney, vascular sy... more The proper size of epithelial tubes is critical for the function of the lung, kidney, vascular system and other organs, but the genetic and cellular mechanisms that control epithelial tube size are unknown. We investigated tube size control in the embryonic and larval tracheal (respiratory) system of Drosophila. A morphometric analysis showed that primary tracheal branches have characteristic sizes that undergo programmed changes during development. Branches grow at different rates and their diameters and lengths are regulated independently: tube length increases gradually throughout development, whereas tube diameter increases abruptly at discrete times in development. Cellular analysis and manipulation of tracheal cell number using cell-cycle mutations demonstrated that tube size is not dictated by the specific number or shape of the tracheal cells that constitute it. Rather, tube size appears to be controlled by coordinately regulating the apical (lumenal) surface of tracheal cel...
The outcomes of patients with SCLC have not yet been substantially impacted by the revolution in ... more The outcomes of patients with SCLC have not yet been substantially impacted by the revolution in precision oncology, primarily owing to a paucity of genetic alterations in actionable driver oncogenes. Nevertheless, systemic therapies that include immunotherapy are beginning to show promise in the clinic. Although, these results are encouraging, many patients do not respond to, or rapidly recur after, current regimens, necessitating alternative or complementary therapeutic strategies. In this review, we discuss ongoing investigations into the pathobiology of this recalcitrant cancer and the therapeutic vulnerabilities that are exposed by the disease state. Included within this discussion, is a snapshot of the current biomarker and clinical trial landscapes for SCLC. Finally, we identify key knowledge gaps that should be addressed to advance the field in pursuit of reduced SCLC mortality. This review largely summarizes work presented at the Third Biennial International Association for...