Michael O'Donovan - Academia.edu (original) (raw)

Papers by Michael O'Donovan

Research paper thumbnail of Whole-cell patch clamp recording from rhythmically active motoneurons in the isolated spinal cord of the chick embryo

Neuroscience Letters, 1991

Research paper thumbnail of Retrograde Loading of Nerves, Tracts, and Spinal Roots with Fluorescent Dyes

Journal of Visualized Experiments, 2012

Retrograde labeling of neurons is a standard anatomical method 1,2 that has also been used to loa... more Retrograde labeling of neurons is a standard anatomical method 1,2 that has also been used to load calcium and voltage-sensitive dyes into neurons 3-6. Generally, the dyes are applied as solid crystals or by local pressure injection using glass pipettes. However, this can result in dilution of the dye and reduced labeling intensity, particularly when several hours are required for dye diffusion. Here we demonstrate a simple and low-cost technique for introducing fluorescent and ion-sensitive dyes into neurons using a polyethylene suction pipette filled with the dye solution. This method offers a reliable way for maintaining a high concentration of the dye in contact with axons throughout the loading procedure.

Research paper thumbnail of A connectivity model for the locomotor network of Caenorhabditis elegans

Research paper thumbnail of Z. Brain Research Reviews 30 1999 27--51

ABSTRACT Motivated by the challenge of improving neuroprosthetic devices, the authors review curr... more ABSTRACT Motivated by the challenge of improving neuroprosthetic devices, the authors review current knowledge relating to harnessing the potential of spinal neural circuits, such as reflexes and pattern generators. If such spinal interneuronal circuits could be activated, they could provide the coordinated control of many muscles that is so complex to implement with a device that aims to address each participating muscle individually. The authors' goal is to identify candidate spinal circuits and areas of research that might open opportunities to effect control of human limbs through electrical activation of such circuits. David McCrea's discussion of the ways in which hindlimb reflexes in the cat modify motor activity may help in developing optimal strategies for functional neuromuscular Z. stimulation FNS , by using knowledge of how reflex actions can adapt to different conditions. Michael O'Donovan's discussion of the development of rhythmogenic networks in the chick embryo may provide clues to methods of generating rhythmic activity in the adult spinal cord. Serge Rossignol examines the spinal pattern generator for locomotion in cats, its trigger mechanisms, modulation and adaptation, and suggests how this knowledge can help guide therapeutic approaches in humans. Hugues Barbeau applies the work of Z. Rossignol and others to locomotor training in human subjects who have suffered spinal cord injury SCI with incomplete motor function Z. loss IMFL . Michel Lemay and Warren Grill discuss some of the technical challenges that must be addressed by engineers to implement a neuroprosthesis using electrical stimulation of the spinal cord, particularly the control issues that would have to be resolved. q 1999 Elsevier Science B.V. All rights reserved.

Research paper thumbnail of Mechanisms of excitation of spinal networks by stimulation of the ventral roots

Annals of the New York Academy of Sciences, 2010

It has recently been demonstrated that motoneurons in neonatal rodents release an excitatory amin... more It has recently been demonstrated that motoneurons in neonatal rodents release an excitatory amino acid, in addition to acetylcholine, from their central terminals onto Renshaw cells. Although the function of this amino acid release is not understood, it may mediate the excitatory actions of motor axon stimulation on spinal motor networks. Stimulation of motor axons in the ventral roots or muscle nerves can activate the locomotor central pattern generator or entrain bursting in the disinhibited cord. Both of these effects persist in the presence of cholinergic antagonists and are abolished or diminished by ionotropic and metabotropic glutamate antagonists. Calcium imaging in the disinhibited cord shows that a ventral root stimulus evokes ventrolateral activity initially which subsequently propagates to the rest of the cord. This finding suggests that excitatory interneurons excited by motoneuron recurrent collaterals are located in this region. However, motoneurons do not exhibit short latency excitatory potentials in response to ventral root stimulation indicating that the excitatory effects are mediated polysynaptically. The significance of these findings is discussed.

Research paper thumbnail of Preservation of VGLUT1 synapses on ventral calbindin-immunoreactive interneurons and normal locomotor function in a mouse model of spinal muscular atrophy

Research paper thumbnail of A connectivity model for the locomotor network of Caenorhabditis elegans

Research paper thumbnail of Interactions between Dorsal and Ventral Root Stimulation on the Generation of Locomotor-Like Activity in the Neonatal Mouse Spinal Cord

eNeuro

We investigated whether dorsal (DR) and ventral root (VR) stimulus trains engage common postsynap... more We investigated whether dorsal (DR) and ventral root (VR) stimulus trains engage common postsynaptic components to activate the central pattern generator (CPG) for locomotion in the neonatal mouse spinal cord. VR stimulation did not activate the first order interneurons mediating the activation of the locomotor CPG by sacrocaudal afferent stimulation. Simultaneous stimulation of adjacent dorsal or ventral root pairs, subthreshold for evoking locomotor-like activity, did not summate to activate the CPG. This suggests that locomotor-like activity is triggered when a critical class of efferent or afferent axons is stimulated and does not depend on the number of stimulated axons or activated postsynaptic neurons. DR- and VR-evoked episodes exhibited differences in the coupling between VR pairs. In DR-evoked episodes, the coupling between the ipsilateral and contralateral flexor/extensor roots was similar and stronger than the bilateral extensor roots. In VR-evoked episodes, ipsilateral ...

Research paper thumbnail of Motoneuronal Spinal Circuits in Degenerative Motoneuron Disease

Frontiers in Molecular Neuroscience

Research paper thumbnail of Identification of a novel spinal nociceptive-motor gate control for Aδ pain stimuli in rats

eLife

Physiological responses to nociceptive stimuli are initiated within tens of milliseconds, but the... more Physiological responses to nociceptive stimuli are initiated within tens of milliseconds, but the corresponding sub-second behavioral responses have not been adequately explored in awake, unrestrained animals. A detailed understanding of these responses is crucial for progress in pain neurobiology. Here, high-speed videography during nociceptive Aδ fiber stimulation demonstrated engagement of a multi-segmental motor program coincident with, or even preceding, withdrawal of the stimulated paw. The motor program included early head orientation and adjustments of the torso and un-stimulated paws. Moreover, we observed a remarkably potent gating mechanism when the animal was standing on its hindlimbs and which was partially dependent on the endogenous opioid system. These data reveal a profound, immediate and precise integration of nociceptive inputs with ongoing motor activities leading to the initiation of complex, yet behaviorally appropriate, response patterns and the mobilization o...

Research paper thumbnail of Cat Hindlimb Motoneurons During Locomotion

Research paper thumbnail of Cat Hindlirnb Motoneurons During Locomotion. 111. Functional Segregation in Sartorius

Cat sartorius has two distinct anatomical portions, anterior (SA-a) and medial (SA-m). SA-a acts ... more Cat sartorius has two distinct anatomical portions, anterior (SA-a) and medial (SA-m). SA-a acts to extend the knee and also to flex the hip. SA-m acts to flex both the knee and the hip. The objective of this study was to investigate how a "single motoneuron pool" is used to control at least three separate functions mediated by the two anatomical portions of one muscle. 2. Discharge patterns of single motoneurons projecting to the sartorius muscle were recorded using floating microelectrodes implanted in the L5 ventral root of cats. The elec

Research paper thumbnail of O'Donovan, M. J. Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse

Journal of Neurophysiology

We examined the ability of the isolated lumbosacral spinal cord of the neonatal mouse (P0-7) to g... more We examined the ability of the isolated lumbosacral spinal cord of the neonatal mouse (P0-7) to generate rhythmic motor activity under several different conditions. In the absence of electrical or pharmacological stimulation, we recorded several patterns of spontaneous ventral root depolarization and discharge. Spontaneous, alternating discharge between contralateral ventral roots could occur two to three times over a 10-min interval. We also observed other patterns, including left-right synchrony and rhythmic activity restricted to one side of the cord. Trains of stimuli delivered to the lumbar/coccygeal dorsal roots or the sural nerve reliably evoked episodes of rhythmic activity. During these evoked episodes, rhythmic ventral root discharges could occur on one side of the cord or could alternate from side to side. Bath application of a combination of N-methyl-D,L-aspartate (NMA), serotonin, and dopamine produced rhythmic activity that could last for several hours. Under these conditions, the discharge recorded from the left and right L 1-L 3 ventral roots alternated. In the L 4-L 5 segments, the discharge had two peaks in each cycle, coincident with discharge of the ipsilateral and contralateral L 1-L 3 roots. The L 6 ventral root discharge alternated with that recorded from the ipsilateral L 1-L 3 roots. We established that the drug-induced rhythm was locomotor-like by recording an alternating pattern of discharge between ipsilateral flexor and extensor hindlimb muscle nerves. In addition, by recording simultaneously from ventral roots and muscle nerves, we established that ankle flexor discharge was in phase with ipsilateral L 1 /L 2 ventral root discharge, while extensor discharge was in phase with ipsilateral L 6 ventral root discharge. Rhythmic patterns of ventral root discharge were preserved following mid-sagittal section of the spinal cord, demonstrating that reciprocal inhibitory connections between the left and right sides of the cord are not essential for rhythmogenesis in the neonatal mouse cord. Blocking N-methyl-D-aspartate receptors, in both the intact and the hemisected preparation, revealed that these receptors contribute to but are not essential for rhythmogenesis. In contrast, the rhythm was abolished following blockade of kainate/AMPA receptors with 6-cyano-7-nitroquinoxalene-2,3-dione. These findings demonstrate that the isolated mouse spinal cord can produce a variety of coordinated activities, including locomotor-like activity. The ability to study these behaviors under a variety of different conditions offers promise for future studies of rhythmogenic mechanisms in this preparation.

Research paper thumbnail of Electrophysiological responses of sympathetic preganglionic neurons to ANG II and

publishes original articles on the function of the nervous system. It is published 12

Research paper thumbnail of Chub, N. & O'Donovan, M. J. Blockade and recovery of spontaneous rhythmic activity after application of neurotransmitter antagonists to spinal networks of the chick embryo. J. Neurosci. 18, 294-306

The Journal of Neuroscience : The Official Journal of the Society for Neuroscience

We studied the regulation of spontaneous activity in the embryonic (day 10-11) chick spinal cord.... more We studied the regulation of spontaneous activity in the embryonic (day 10-11) chick spinal cord. After bath application of either an excitatory amino acid (AP-5 or CNQX) and a nicotinic cholinergic (DHbetaE or mecamylamine) antagonist, or glycine and GABA receptor (bicuculline, 2-hydroxysaclofen, and strychnine) antagonists, spontaneous activity was blocked for a period (30-90 min) but then reappeared in the presence of the drugs. The efficacy of the antagonists was assessed by their continued ability to block spinal reflex pathways during the reappearance of spontaneous activity. Spontaneous activity ceased over the 4-5 hour monitoring period when both sets of antagonists were applied together. After application of glycine and GABA receptor antagonists, the frequency of occurrence of spontaneous episodes slowed and became highly variable. By contrast, during glutamatergic and nicotinic cholinergic blockade, the frequency of occurrence of spontaneous episodes initially slowed and t...

Research paper thumbnail of Cat Hindlimb Motoneurons During Locomotion. 11. Normal Activity Patterns

Research paper thumbnail of Pharmacological Investigation of Fluoro-Gold Entry into Spinal Neurons

PLOS ONE, 2015

The fluorescent tracer Fluoro-Gold has been widely used to label neurons retrogradely. Here we sh... more The fluorescent tracer Fluoro-Gold has been widely used to label neurons retrogradely. Here we show that Fluoro-Gold can also enter neurons through AMPA receptor endocytosis. We found that a 30 minute application of Fluoro-Gold to the isolated spinal cord labeled neurons under control conditions and in the presence of glutamatergic agonists including NMDA and AMPA. The labeling was abolished or greatly reduced by glutamatergic antagonists and the endocytic inhibitors Dynasore and dynamin inhibitory peptide. Whole cell recordings from spinal neurons exposed to extracellular AMPA revealed large inward currents that spontaneously decayed in the presence of the agonist but were maintained when a dynamin inhibitory peptide was included in the electrode. These findings suggest that Fluoro-Gold enters spinal neurons through AMPA-mediated receptor internalization. Drugs used to induce locomotor-like activity in the spinal cord also increased and decreased Fluoro-Gold labeling in a drug and lamina specific manner, indicating that AMPAR endocytosis is altered in the presence of the locomotor cocktail. Our findings suggest that endocytosis of Fluoro-Gold could potentially complicate the interpretation of experiments in which the tracer is used to label neurons retrogradely. Moreover, they also demonstrate that many drugs, including the locomotor cocktail, can modulate the number and/or the composition of AMPA receptors on spinal neurons and thereby affect network excitability.

Research paper thumbnail of Post-episode depression of GABAergic transmission in spinal neurons of the chick embryo

Journal of neurophysiology, 2001

Whole cell recordings were obtained from ventral horn neurons in spontaneously active spinal cord... more Whole cell recordings were obtained from ventral horn neurons in spontaneously active spinal cords isolated from the chick embryo [embryonic days 10 to 11 (E10-E11)] to examine the post-episode depression of GABAergic transmission. Spontaneous activity occurred as recurrent, rhythmic episodes approximately 60 s in duration with 10- to 15-min quiescent inter-episode intervals. Current-clamp recording revealed that episodes were followed by a transient hyperpolarization (7 +/- 1.2 mV, mean +/- SE), which dissipated as a slow (0.5-1 mV/min) depolarization until the next episode. Local application of bicuculline 8 min after an episode hyperpolarized spinal neurons by 6 +/- 0.8 mV and increased their input resistance by 13%, suggesting the involvement of GABAergic transmission. Gramicidin perforated-patch recordings showed that the GABAa reversal potential was above rest potential (E(GABAa) = -29 +/- 3 mV) and allowed estimation of the physiological intracellular [Cl(-)] = 50 mM. In whol...

Research paper thumbnail of NMDA-induced dendritic oscillations during a soma voltage clamp of chick spinal neurons

The Journal of neuroscience : the official journal of the Society for Neuroscience, 1999

An investigation of dendritic membrane properties was performed by whole-cell patch measurements ... more An investigation of dendritic membrane properties was performed by whole-cell patch measurements of the biophysical properties of intact chick spinal neurons that are involved in rhythmogenesis. A whole-cell voltage clamp of the somatic membrane was used to block NMDA-induced voltage oscillations from the cell body, thus partially isolating the intrinsic oscillatory properties of dendritic membranes from those of the soma. An experimental approach was developed that takes into account the complexity of the dendritic tree in an environment as normal as possible, without the need for cell isolation or slice preparations. A computational study of the experimentally determined model showed that excitatory amino acid receptors on dendrites can dynamically control the electrotonic length of the dendrites through the activation of negative slope conductances. These experiments demonstrate the presence of NMDA receptors on the dendrites and that they induce intrinsic oscillations when the s...

Research paper thumbnail of Cross-reinnervated motor units in cat muscle. II. Soleus muscle reinnervated by flexor digitorum longus motoneurons

Journal of neurophysiology, 1985

The properties of whole soleus (SOL) muscles and of individual motor units were studied in cats 3... more The properties of whole soleus (SOL) muscles and of individual motor units were studied in cats 30-50 wk after self-reinnervation by soleus (SOL) motoneurons (SOL----SOL) or cross-reinnervation by flexor digitorum longus (FDL) motoneurons (FDL----SOL). As in the preceding paper (22), intracellular and glycogen-depletion methods were used to examine the physiological and histochemical properties of individual motor units. The results were compared with data from normal SOL motor units (8, 12). Intentionally self-reinnervated SOL muscles (SOL----SOL; n = 6) were normal in size and wet weight, and all of the five SOL----SOL motor units studied had physiological and histochemical characteristics that matched those of normal SOL units. Cross-reinnervation of SOL by FDL alpha-motoneurons (FDL----SOL; n = 7) produced muscles with wet weights and appearance essentially identical to normal SOL. However, whole-muscle twitch contraction times were much shorter (mean 60.4 ms) than those of norm...

Research paper thumbnail of Whole-cell patch clamp recording from rhythmically active motoneurons in the isolated spinal cord of the chick embryo

Neuroscience Letters, 1991

Research paper thumbnail of Retrograde Loading of Nerves, Tracts, and Spinal Roots with Fluorescent Dyes

Journal of Visualized Experiments, 2012

Retrograde labeling of neurons is a standard anatomical method 1,2 that has also been used to loa... more Retrograde labeling of neurons is a standard anatomical method 1,2 that has also been used to load calcium and voltage-sensitive dyes into neurons 3-6. Generally, the dyes are applied as solid crystals or by local pressure injection using glass pipettes. However, this can result in dilution of the dye and reduced labeling intensity, particularly when several hours are required for dye diffusion. Here we demonstrate a simple and low-cost technique for introducing fluorescent and ion-sensitive dyes into neurons using a polyethylene suction pipette filled with the dye solution. This method offers a reliable way for maintaining a high concentration of the dye in contact with axons throughout the loading procedure.

Research paper thumbnail of A connectivity model for the locomotor network of Caenorhabditis elegans

Research paper thumbnail of Z. Brain Research Reviews 30 1999 27--51

ABSTRACT Motivated by the challenge of improving neuroprosthetic devices, the authors review curr... more ABSTRACT Motivated by the challenge of improving neuroprosthetic devices, the authors review current knowledge relating to harnessing the potential of spinal neural circuits, such as reflexes and pattern generators. If such spinal interneuronal circuits could be activated, they could provide the coordinated control of many muscles that is so complex to implement with a device that aims to address each participating muscle individually. The authors' goal is to identify candidate spinal circuits and areas of research that might open opportunities to effect control of human limbs through electrical activation of such circuits. David McCrea's discussion of the ways in which hindlimb reflexes in the cat modify motor activity may help in developing optimal strategies for functional neuromuscular Z. stimulation FNS , by using knowledge of how reflex actions can adapt to different conditions. Michael O'Donovan's discussion of the development of rhythmogenic networks in the chick embryo may provide clues to methods of generating rhythmic activity in the adult spinal cord. Serge Rossignol examines the spinal pattern generator for locomotion in cats, its trigger mechanisms, modulation and adaptation, and suggests how this knowledge can help guide therapeutic approaches in humans. Hugues Barbeau applies the work of Z. Rossignol and others to locomotor training in human subjects who have suffered spinal cord injury SCI with incomplete motor function Z. loss IMFL . Michel Lemay and Warren Grill discuss some of the technical challenges that must be addressed by engineers to implement a neuroprosthesis using electrical stimulation of the spinal cord, particularly the control issues that would have to be resolved. q 1999 Elsevier Science B.V. All rights reserved.

Research paper thumbnail of Mechanisms of excitation of spinal networks by stimulation of the ventral roots

Annals of the New York Academy of Sciences, 2010

It has recently been demonstrated that motoneurons in neonatal rodents release an excitatory amin... more It has recently been demonstrated that motoneurons in neonatal rodents release an excitatory amino acid, in addition to acetylcholine, from their central terminals onto Renshaw cells. Although the function of this amino acid release is not understood, it may mediate the excitatory actions of motor axon stimulation on spinal motor networks. Stimulation of motor axons in the ventral roots or muscle nerves can activate the locomotor central pattern generator or entrain bursting in the disinhibited cord. Both of these effects persist in the presence of cholinergic antagonists and are abolished or diminished by ionotropic and metabotropic glutamate antagonists. Calcium imaging in the disinhibited cord shows that a ventral root stimulus evokes ventrolateral activity initially which subsequently propagates to the rest of the cord. This finding suggests that excitatory interneurons excited by motoneuron recurrent collaterals are located in this region. However, motoneurons do not exhibit short latency excitatory potentials in response to ventral root stimulation indicating that the excitatory effects are mediated polysynaptically. The significance of these findings is discussed.

Research paper thumbnail of Preservation of VGLUT1 synapses on ventral calbindin-immunoreactive interneurons and normal locomotor function in a mouse model of spinal muscular atrophy

Research paper thumbnail of A connectivity model for the locomotor network of Caenorhabditis elegans

Research paper thumbnail of Interactions between Dorsal and Ventral Root Stimulation on the Generation of Locomotor-Like Activity in the Neonatal Mouse Spinal Cord

eNeuro

We investigated whether dorsal (DR) and ventral root (VR) stimulus trains engage common postsynap... more We investigated whether dorsal (DR) and ventral root (VR) stimulus trains engage common postsynaptic components to activate the central pattern generator (CPG) for locomotion in the neonatal mouse spinal cord. VR stimulation did not activate the first order interneurons mediating the activation of the locomotor CPG by sacrocaudal afferent stimulation. Simultaneous stimulation of adjacent dorsal or ventral root pairs, subthreshold for evoking locomotor-like activity, did not summate to activate the CPG. This suggests that locomotor-like activity is triggered when a critical class of efferent or afferent axons is stimulated and does not depend on the number of stimulated axons or activated postsynaptic neurons. DR- and VR-evoked episodes exhibited differences in the coupling between VR pairs. In DR-evoked episodes, the coupling between the ipsilateral and contralateral flexor/extensor roots was similar and stronger than the bilateral extensor roots. In VR-evoked episodes, ipsilateral ...

Research paper thumbnail of Motoneuronal Spinal Circuits in Degenerative Motoneuron Disease

Frontiers in Molecular Neuroscience

Research paper thumbnail of Identification of a novel spinal nociceptive-motor gate control for Aδ pain stimuli in rats

eLife

Physiological responses to nociceptive stimuli are initiated within tens of milliseconds, but the... more Physiological responses to nociceptive stimuli are initiated within tens of milliseconds, but the corresponding sub-second behavioral responses have not been adequately explored in awake, unrestrained animals. A detailed understanding of these responses is crucial for progress in pain neurobiology. Here, high-speed videography during nociceptive Aδ fiber stimulation demonstrated engagement of a multi-segmental motor program coincident with, or even preceding, withdrawal of the stimulated paw. The motor program included early head orientation and adjustments of the torso and un-stimulated paws. Moreover, we observed a remarkably potent gating mechanism when the animal was standing on its hindlimbs and which was partially dependent on the endogenous opioid system. These data reveal a profound, immediate and precise integration of nociceptive inputs with ongoing motor activities leading to the initiation of complex, yet behaviorally appropriate, response patterns and the mobilization o...

Research paper thumbnail of Cat Hindlimb Motoneurons During Locomotion

Research paper thumbnail of Cat Hindlirnb Motoneurons During Locomotion. 111. Functional Segregation in Sartorius

Cat sartorius has two distinct anatomical portions, anterior (SA-a) and medial (SA-m). SA-a acts ... more Cat sartorius has two distinct anatomical portions, anterior (SA-a) and medial (SA-m). SA-a acts to extend the knee and also to flex the hip. SA-m acts to flex both the knee and the hip. The objective of this study was to investigate how a "single motoneuron pool" is used to control at least three separate functions mediated by the two anatomical portions of one muscle. 2. Discharge patterns of single motoneurons projecting to the sartorius muscle were recorded using floating microelectrodes implanted in the L5 ventral root of cats. The elec

Research paper thumbnail of O'Donovan, M. J. Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse

Journal of Neurophysiology

We examined the ability of the isolated lumbosacral spinal cord of the neonatal mouse (P0-7) to g... more We examined the ability of the isolated lumbosacral spinal cord of the neonatal mouse (P0-7) to generate rhythmic motor activity under several different conditions. In the absence of electrical or pharmacological stimulation, we recorded several patterns of spontaneous ventral root depolarization and discharge. Spontaneous, alternating discharge between contralateral ventral roots could occur two to three times over a 10-min interval. We also observed other patterns, including left-right synchrony and rhythmic activity restricted to one side of the cord. Trains of stimuli delivered to the lumbar/coccygeal dorsal roots or the sural nerve reliably evoked episodes of rhythmic activity. During these evoked episodes, rhythmic ventral root discharges could occur on one side of the cord or could alternate from side to side. Bath application of a combination of N-methyl-D,L-aspartate (NMA), serotonin, and dopamine produced rhythmic activity that could last for several hours. Under these conditions, the discharge recorded from the left and right L 1-L 3 ventral roots alternated. In the L 4-L 5 segments, the discharge had two peaks in each cycle, coincident with discharge of the ipsilateral and contralateral L 1-L 3 roots. The L 6 ventral root discharge alternated with that recorded from the ipsilateral L 1-L 3 roots. We established that the drug-induced rhythm was locomotor-like by recording an alternating pattern of discharge between ipsilateral flexor and extensor hindlimb muscle nerves. In addition, by recording simultaneously from ventral roots and muscle nerves, we established that ankle flexor discharge was in phase with ipsilateral L 1 /L 2 ventral root discharge, while extensor discharge was in phase with ipsilateral L 6 ventral root discharge. Rhythmic patterns of ventral root discharge were preserved following mid-sagittal section of the spinal cord, demonstrating that reciprocal inhibitory connections between the left and right sides of the cord are not essential for rhythmogenesis in the neonatal mouse cord. Blocking N-methyl-D-aspartate receptors, in both the intact and the hemisected preparation, revealed that these receptors contribute to but are not essential for rhythmogenesis. In contrast, the rhythm was abolished following blockade of kainate/AMPA receptors with 6-cyano-7-nitroquinoxalene-2,3-dione. These findings demonstrate that the isolated mouse spinal cord can produce a variety of coordinated activities, including locomotor-like activity. The ability to study these behaviors under a variety of different conditions offers promise for future studies of rhythmogenic mechanisms in this preparation.

Research paper thumbnail of Electrophysiological responses of sympathetic preganglionic neurons to ANG II and

publishes original articles on the function of the nervous system. It is published 12

Research paper thumbnail of Chub, N. & O'Donovan, M. J. Blockade and recovery of spontaneous rhythmic activity after application of neurotransmitter antagonists to spinal networks of the chick embryo. J. Neurosci. 18, 294-306

The Journal of Neuroscience : The Official Journal of the Society for Neuroscience

We studied the regulation of spontaneous activity in the embryonic (day 10-11) chick spinal cord.... more We studied the regulation of spontaneous activity in the embryonic (day 10-11) chick spinal cord. After bath application of either an excitatory amino acid (AP-5 or CNQX) and a nicotinic cholinergic (DHbetaE or mecamylamine) antagonist, or glycine and GABA receptor (bicuculline, 2-hydroxysaclofen, and strychnine) antagonists, spontaneous activity was blocked for a period (30-90 min) but then reappeared in the presence of the drugs. The efficacy of the antagonists was assessed by their continued ability to block spinal reflex pathways during the reappearance of spontaneous activity. Spontaneous activity ceased over the 4-5 hour monitoring period when both sets of antagonists were applied together. After application of glycine and GABA receptor antagonists, the frequency of occurrence of spontaneous episodes slowed and became highly variable. By contrast, during glutamatergic and nicotinic cholinergic blockade, the frequency of occurrence of spontaneous episodes initially slowed and t...

Research paper thumbnail of Cat Hindlimb Motoneurons During Locomotion. 11. Normal Activity Patterns

Research paper thumbnail of Pharmacological Investigation of Fluoro-Gold Entry into Spinal Neurons

PLOS ONE, 2015

The fluorescent tracer Fluoro-Gold has been widely used to label neurons retrogradely. Here we sh... more The fluorescent tracer Fluoro-Gold has been widely used to label neurons retrogradely. Here we show that Fluoro-Gold can also enter neurons through AMPA receptor endocytosis. We found that a 30 minute application of Fluoro-Gold to the isolated spinal cord labeled neurons under control conditions and in the presence of glutamatergic agonists including NMDA and AMPA. The labeling was abolished or greatly reduced by glutamatergic antagonists and the endocytic inhibitors Dynasore and dynamin inhibitory peptide. Whole cell recordings from spinal neurons exposed to extracellular AMPA revealed large inward currents that spontaneously decayed in the presence of the agonist but were maintained when a dynamin inhibitory peptide was included in the electrode. These findings suggest that Fluoro-Gold enters spinal neurons through AMPA-mediated receptor internalization. Drugs used to induce locomotor-like activity in the spinal cord also increased and decreased Fluoro-Gold labeling in a drug and lamina specific manner, indicating that AMPAR endocytosis is altered in the presence of the locomotor cocktail. Our findings suggest that endocytosis of Fluoro-Gold could potentially complicate the interpretation of experiments in which the tracer is used to label neurons retrogradely. Moreover, they also demonstrate that many drugs, including the locomotor cocktail, can modulate the number and/or the composition of AMPA receptors on spinal neurons and thereby affect network excitability.

Research paper thumbnail of Post-episode depression of GABAergic transmission in spinal neurons of the chick embryo

Journal of neurophysiology, 2001

Whole cell recordings were obtained from ventral horn neurons in spontaneously active spinal cord... more Whole cell recordings were obtained from ventral horn neurons in spontaneously active spinal cords isolated from the chick embryo [embryonic days 10 to 11 (E10-E11)] to examine the post-episode depression of GABAergic transmission. Spontaneous activity occurred as recurrent, rhythmic episodes approximately 60 s in duration with 10- to 15-min quiescent inter-episode intervals. Current-clamp recording revealed that episodes were followed by a transient hyperpolarization (7 +/- 1.2 mV, mean +/- SE), which dissipated as a slow (0.5-1 mV/min) depolarization until the next episode. Local application of bicuculline 8 min after an episode hyperpolarized spinal neurons by 6 +/- 0.8 mV and increased their input resistance by 13%, suggesting the involvement of GABAergic transmission. Gramicidin perforated-patch recordings showed that the GABAa reversal potential was above rest potential (E(GABAa) = -29 +/- 3 mV) and allowed estimation of the physiological intracellular [Cl(-)] = 50 mM. In whol...

Research paper thumbnail of NMDA-induced dendritic oscillations during a soma voltage clamp of chick spinal neurons

The Journal of neuroscience : the official journal of the Society for Neuroscience, 1999

An investigation of dendritic membrane properties was performed by whole-cell patch measurements ... more An investigation of dendritic membrane properties was performed by whole-cell patch measurements of the biophysical properties of intact chick spinal neurons that are involved in rhythmogenesis. A whole-cell voltage clamp of the somatic membrane was used to block NMDA-induced voltage oscillations from the cell body, thus partially isolating the intrinsic oscillatory properties of dendritic membranes from those of the soma. An experimental approach was developed that takes into account the complexity of the dendritic tree in an environment as normal as possible, without the need for cell isolation or slice preparations. A computational study of the experimentally determined model showed that excitatory amino acid receptors on dendrites can dynamically control the electrotonic length of the dendrites through the activation of negative slope conductances. These experiments demonstrate the presence of NMDA receptors on the dendrites and that they induce intrinsic oscillations when the s...

Research paper thumbnail of Cross-reinnervated motor units in cat muscle. II. Soleus muscle reinnervated by flexor digitorum longus motoneurons

Journal of neurophysiology, 1985

The properties of whole soleus (SOL) muscles and of individual motor units were studied in cats 3... more The properties of whole soleus (SOL) muscles and of individual motor units were studied in cats 30-50 wk after self-reinnervation by soleus (SOL) motoneurons (SOL----SOL) or cross-reinnervation by flexor digitorum longus (FDL) motoneurons (FDL----SOL). As in the preceding paper (22), intracellular and glycogen-depletion methods were used to examine the physiological and histochemical properties of individual motor units. The results were compared with data from normal SOL motor units (8, 12). Intentionally self-reinnervated SOL muscles (SOL----SOL; n = 6) were normal in size and wet weight, and all of the five SOL----SOL motor units studied had physiological and histochemical characteristics that matched those of normal SOL units. Cross-reinnervation of SOL by FDL alpha-motoneurons (FDL----SOL; n = 7) produced muscles with wet weights and appearance essentially identical to normal SOL. However, whole-muscle twitch contraction times were much shorter (mean 60.4 ms) than those of norm...