Muhammad Abid - Academia.edu (original) (raw)
Uploads
Papers by Muhammad Abid
International Journal of Mechanics and Materials in Design, 2005
Performance of a flange joint is characterised mainly by its 'strength' and 'sealing capability'.... more Performance of a flange joint is characterised mainly by its 'strength' and 'sealing capability'. A number of analytical and experimental studies have been conducted to study these characteristics under internal pressure loading. However, with the advent of new technological trends for high temperature and pressure applications, an increased demand for analysis is recognized. The effect of steady-state thermal loading makes the problem more complex as it leads to combined application of internal pressure and temperature. The present design codes do not address the effects of temperature on the structural integrity and sealing ability. In addition, the available design solutions do not solve problems of failure of a gasketed flange joint even under bolt up and internal pressure loading conditions. To investigate joint strength and sealing capability under combined internal pressure and different steady-state thermal loading, a 3D nonlinear finite element analysis (FEA) of a gasketed flange joint is carried out and its behaviour is discussed. To determine the safe operating conditions or the actual joint load capacity, the joint is further analyzed for different internal pressures keeping the temperature constant.
International Journal of Mechanics and Materials in Design, 2005
Performance of a flange joint is characterised mainly by its 'strength' and 'sealing capability'.... more Performance of a flange joint is characterised mainly by its 'strength' and 'sealing capability'. A number of analytical and experimental studies have been conducted to study these characteristics under internal pressure loading. However, with the advent of new technological trends for high temperature and pressure applications, an increased demand for analysis is recognized. The effect of steady-state thermal loading makes the problem more complex as it leads to combined application of internal pressure and temperature. The present design codes do not address the effects of temperature on the structural integrity and sealing ability. In addition, the available design solutions do not solve problems of failure of a gasketed flange joint even under bolt up and internal pressure loading conditions. To investigate joint strength and sealing capability under combined internal pressure and different steady-state thermal loading, a 3D nonlinear finite element analysis (FEA) of a gasketed flange joint is carried out and its behaviour is discussed. To determine the safe operating conditions or the actual joint load capacity, the joint is further analyzed for different internal pressures keeping the temperature constant.