Piero Farabollini - Academia.edu (original) (raw)
Related Authors
Consiglio Nazionale delle Ricerche (CNR)
Uploads
Papers by Piero Farabollini
Geological Society of America eBooks, Jun 21, 2022
ABSTRACT Stratigraphic analysis of two sections of a fluvial strath terrace exposed on the left b... more ABSTRACT Stratigraphic analysis of two sections of a fluvial strath terrace exposed on the left bank of the Esino River near the village of Trocchetti (province of Ancona, Marche region of central Italy), and the study of a large landslide located near the village of San Cristoforo, a few kilometers down valley from the Trocchetti fluvial terrace, provide evidence for two catastrophic environmental events, namely: (1) the aggradation on the riverbed of coarse, chaotic gravel due to a violent flashflood; and (2) the formation of a large ephemeral lake as the consequence of the landslide that barred the river channel at San Cristoforo. Archaeological and historical information about the lost Roman city of Tuficum, which was located just a kilometer upriver from the Trocchetti terrace, and ceramic artifacts found in the chaotic gravel unit, led us to the hypothesis that both the flashflood and the landslide were induced by the sudden, severe climate change of the Late Antique Little Ice Age (mid-sixth century to mid-seventh century CE).
AIMS geosciences, 2019
Numerical hydrological models are increasingly a fundamental tool for the analysis of floods in a... more Numerical hydrological models are increasingly a fundamental tool for the analysis of floods in a river basin. If used for predictive purposes, the choice of the "design storm" to be applied, once set other variables (as basin geometry, land use, etc.), becomes fundamental. All the statistical methods currently adopted to calculate the design storm, suggest the use of long rainfall series (at least 40-50 years). On the other hand, the increasingly high frequency of intense events (rainfalls and floods) in the last twenty years, also as a result of the ongoing climate change, testify to the need for a critical analysis of the statistical significance of these methods. The present work, by applying the Gumbel distribution (Generalized Extreme Value Type-I distribution) on two rainfall series (1951-2018 and 1998-2018) coming from the same rain gauges and the "Chicago Method" for the calculation of the design storm, highlights how the choice of the series may influence the formation of flood events. More in particular, the comparison of different hydrological models, generated using HEC-HMS software on three sample basins of the Adriatic side of central Italy, shows that the use of shorter and recent rainfall series results in a generally higher runoff, mostly in case of events with a return time equal or higher than 100 years.
AIMS geosciences, 2019
Numerical hydrological models are increasingly a fundamental tool for the analysis of floods in a... more Numerical hydrological models are increasingly a fundamental tool for the analysis of floods in a river basin. If used for predictive purposes, the choice of the "design storm" to be applied, once set other variables (as basin geometry, land use, etc.), becomes fundamental. All the statistical methods currently adopted to calculate the design storm, suggest the use of long rainfall series (at least 40-50 years). On the other hand, the increasingly high frequency of intense events (rainfalls and floods) in the last twenty years, also as a result of the ongoing climate change, testify to the need for a critical analysis of the statistical significance of these methods. The present work, by applying the Gumbel distribution (Generalized Extreme Value Type-I distribution) on two rainfall series (1951-2018 and 1998-2018) coming from the same rain gauges and the "Chicago Method" for the calculation of the design storm, highlights how the choice of the series may influence the formation of flood events. More in particular, the comparison of different hydrological models, generated using HEC-HMS software on three sample basins of the Adriatic side of central Italy, shows that the use of shorter and recent rainfall series results in a generally higher runoff, mostly in case of events with a return time equal or higher than 100 years.
Geological Society of America eBooks, Jun 21, 2022
ABSTRACT Stratigraphic analysis of two sections of a fluvial strath terrace exposed on the left b... more ABSTRACT Stratigraphic analysis of two sections of a fluvial strath terrace exposed on the left bank of the Esino River near the village of Trocchetti (province of Ancona, Marche region of central Italy), and the study of a large landslide located near the village of San Cristoforo, a few kilometers down valley from the Trocchetti fluvial terrace, provide evidence for two catastrophic environmental events, namely: (1) the aggradation on the riverbed of coarse, chaotic gravel due to a violent flashflood; and (2) the formation of a large ephemeral lake as the consequence of the landslide that barred the river channel at San Cristoforo. Archaeological and historical information about the lost Roman city of Tuficum, which was located just a kilometer upriver from the Trocchetti terrace, and ceramic artifacts found in the chaotic gravel unit, led us to the hypothesis that both the flashflood and the landslide were induced by the sudden, severe climate change of the Late Antique Little Ice Age (mid-sixth century to mid-seventh century CE).
AIMS geosciences, 2019
Numerical hydrological models are increasingly a fundamental tool for the analysis of floods in a... more Numerical hydrological models are increasingly a fundamental tool for the analysis of floods in a river basin. If used for predictive purposes, the choice of the "design storm" to be applied, once set other variables (as basin geometry, land use, etc.), becomes fundamental. All the statistical methods currently adopted to calculate the design storm, suggest the use of long rainfall series (at least 40-50 years). On the other hand, the increasingly high frequency of intense events (rainfalls and floods) in the last twenty years, also as a result of the ongoing climate change, testify to the need for a critical analysis of the statistical significance of these methods. The present work, by applying the Gumbel distribution (Generalized Extreme Value Type-I distribution) on two rainfall series (1951-2018 and 1998-2018) coming from the same rain gauges and the "Chicago Method" for the calculation of the design storm, highlights how the choice of the series may influence the formation of flood events. More in particular, the comparison of different hydrological models, generated using HEC-HMS software on three sample basins of the Adriatic side of central Italy, shows that the use of shorter and recent rainfall series results in a generally higher runoff, mostly in case of events with a return time equal or higher than 100 years.
AIMS geosciences, 2019
Numerical hydrological models are increasingly a fundamental tool for the analysis of floods in a... more Numerical hydrological models are increasingly a fundamental tool for the analysis of floods in a river basin. If used for predictive purposes, the choice of the "design storm" to be applied, once set other variables (as basin geometry, land use, etc.), becomes fundamental. All the statistical methods currently adopted to calculate the design storm, suggest the use of long rainfall series (at least 40-50 years). On the other hand, the increasingly high frequency of intense events (rainfalls and floods) in the last twenty years, also as a result of the ongoing climate change, testify to the need for a critical analysis of the statistical significance of these methods. The present work, by applying the Gumbel distribution (Generalized Extreme Value Type-I distribution) on two rainfall series (1951-2018 and 1998-2018) coming from the same rain gauges and the "Chicago Method" for the calculation of the design storm, highlights how the choice of the series may influence the formation of flood events. More in particular, the comparison of different hydrological models, generated using HEC-HMS software on three sample basins of the Adriatic side of central Italy, shows that the use of shorter and recent rainfall series results in a generally higher runoff, mostly in case of events with a return time equal or higher than 100 years.