Ajay Phadke - Academia.edu (original) (raw)
Uploads
Papers by Ajay Phadke
ESRSA Publications, Mar 20, 2013
Acta Biomaterialia, 2012
While elastic modulus is tunable in tissue engineering scaffolds, it is substantially more challe... more While elastic modulus is tunable in tissue engineering scaffolds, it is substantially more challenging to tune the Poisson's ratio of scaffolds. In certain biological applications, scaffolds with a tunable Poisson's ratio may be more suitable for emulating the behavior of native tissue mechanics. Here, we design and fabricate a scaffold, which exhibits simultaneous negative and positive Poisson's ratio behavior. Custom-made digital micro-mirror device stereolithography (DMD-SL) was used to fabricate single-and multiple-layer scaffolds using polyethylene glycol (PEG) based biomaterial. These scaffolds are composed of pore structures having special geometries, and deformation mechanisms, which can be tuned to exhibit both negative Poisson's ratio (NPR) and positive Poisson's ratio (PPR) behavior in a side-to-side or top-bottom configuration. Strain measurement results demonstrate that analytical deformation models and simulations accurately predict the Poisson's ratios of both the NPR and PPR regions. This hybrid Poisson's ratio property can be imparted to any photocurable material, and potentially be applicable in a variety of biomedical applications.
Indian Journal of Pathology and Oncology, 2016
Active and Passive Smart Structures and Integrated Systems 2013, 2013
ABSTRACT Many closed-loop control methods for increasing the power output from piezoelectric ener... more ABSTRACT Many closed-loop control methods for increasing the power output from piezoelectric energy harvesters have been investigated over the past decade. Initial work started with the application of Maximum Power Point Tracking techniques (MPPT) developed for solar power. More recent schemes have focused on taking advantage of the capacitive nature of piezoelectric harvesters to manipulate the transfer of energy from the piezoelectric to the storage element. There have been a couple of main techniques investigated in the literature: Synchronous Charge Extraction (SCE), Synchronized Switching and Discharging to a Capacitor through an Inductor (SSDCI), Synchronized Switch Harvesting on an Inductor (SSHI), and Piezoelectric Pre-Biasing (PPB). While significant increases in harvested power are seen both theoretically and experimentally using powerful external control systems, the applicability of these methods depends highly on the performance and efficiency of the system which implements the synchronized switching. Many piezoelectric energy harvesting systems are used to power devices controlled by a microcontroller (MCU), making them readily available for switching control methods. This work focuses on the practical questions which dictate the applicability of synchronized switching techniques using MCU-based switching control.
ABSTRACT Many closed-loop control methods for increasing the power output from piezoelectric ener... more ABSTRACT Many closed-loop control methods for increasing the power output from piezoelectric energy harvesters have been investigated over the past decade. Initial work started with the application of Maximum Power Point Tracking techniques (MPPT) developed for solar power. More recent schemes have focused on taking advantage of the capacitive nature of piezoelectric harvesters to manipulate the transfer of energy from the piezoelectric to the storage element. There have been a couple of main techniques investigated in the literature: Synchronous Charge Extraction (SCE), Synchronized Switching and Discharging to a Capacitor through an Inductor (SSDCI), Synchronized Switch Harvesting on an Inductor (SSHI), and Piezoelectric Pre-Biasing (PPB). While significant increases in harvested power are seen both theoretically and experimentally using powerful external control systems, the applicability of these methods depends highly on the performance and efficiency of the system which implements the synchronized switching. Many piezoelectric energy harvesting systems are used to power devices controlled by a microcontroller (MCU), making them readily available for switching control methods. This work focuses on the practical questions which dictate the applicability of synchronized switching techniques using MCU-based switching control.
ESRSA Publications, Mar 20, 2013
Acta Biomaterialia, 2012
While elastic modulus is tunable in tissue engineering scaffolds, it is substantially more challe... more While elastic modulus is tunable in tissue engineering scaffolds, it is substantially more challenging to tune the Poisson's ratio of scaffolds. In certain biological applications, scaffolds with a tunable Poisson's ratio may be more suitable for emulating the behavior of native tissue mechanics. Here, we design and fabricate a scaffold, which exhibits simultaneous negative and positive Poisson's ratio behavior. Custom-made digital micro-mirror device stereolithography (DMD-SL) was used to fabricate single-and multiple-layer scaffolds using polyethylene glycol (PEG) based biomaterial. These scaffolds are composed of pore structures having special geometries, and deformation mechanisms, which can be tuned to exhibit both negative Poisson's ratio (NPR) and positive Poisson's ratio (PPR) behavior in a side-to-side or top-bottom configuration. Strain measurement results demonstrate that analytical deformation models and simulations accurately predict the Poisson's ratios of both the NPR and PPR regions. This hybrid Poisson's ratio property can be imparted to any photocurable material, and potentially be applicable in a variety of biomedical applications.
Indian Journal of Pathology and Oncology, 2016
Active and Passive Smart Structures and Integrated Systems 2013, 2013
ABSTRACT Many closed-loop control methods for increasing the power output from piezoelectric ener... more ABSTRACT Many closed-loop control methods for increasing the power output from piezoelectric energy harvesters have been investigated over the past decade. Initial work started with the application of Maximum Power Point Tracking techniques (MPPT) developed for solar power. More recent schemes have focused on taking advantage of the capacitive nature of piezoelectric harvesters to manipulate the transfer of energy from the piezoelectric to the storage element. There have been a couple of main techniques investigated in the literature: Synchronous Charge Extraction (SCE), Synchronized Switching and Discharging to a Capacitor through an Inductor (SSDCI), Synchronized Switch Harvesting on an Inductor (SSHI), and Piezoelectric Pre-Biasing (PPB). While significant increases in harvested power are seen both theoretically and experimentally using powerful external control systems, the applicability of these methods depends highly on the performance and efficiency of the system which implements the synchronized switching. Many piezoelectric energy harvesting systems are used to power devices controlled by a microcontroller (MCU), making them readily available for switching control methods. This work focuses on the practical questions which dictate the applicability of synchronized switching techniques using MCU-based switching control.
ABSTRACT Many closed-loop control methods for increasing the power output from piezoelectric ener... more ABSTRACT Many closed-loop control methods for increasing the power output from piezoelectric energy harvesters have been investigated over the past decade. Initial work started with the application of Maximum Power Point Tracking techniques (MPPT) developed for solar power. More recent schemes have focused on taking advantage of the capacitive nature of piezoelectric harvesters to manipulate the transfer of energy from the piezoelectric to the storage element. There have been a couple of main techniques investigated in the literature: Synchronous Charge Extraction (SCE), Synchronized Switching and Discharging to a Capacitor through an Inductor (SSDCI), Synchronized Switch Harvesting on an Inductor (SSHI), and Piezoelectric Pre-Biasing (PPB). While significant increases in harvested power are seen both theoretically and experimentally using powerful external control systems, the applicability of these methods depends highly on the performance and efficiency of the system which implements the synchronized switching. Many piezoelectric energy harvesting systems are used to power devices controlled by a microcontroller (MCU), making them readily available for switching control methods. This work focuses on the practical questions which dictate the applicability of synchronized switching techniques using MCU-based switching control.