Avraham Raz - Academia.edu (original) (raw)
Papers by Avraham Raz
Oncotarget, Sep 16, 2014
This is an open-access article distributed under the terms of the Creative Commons Attribution Li... more This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Anti-cancer Agents in Medicinal Chemistry, 2008
Lectins are a group of specific proteins that preferentially bind to carbohydrates inside and out... more Lectins are a group of specific proteins that preferentially bind to carbohydrates inside and outside cells. To date, an increasing number of animal lectins have been found and categorized into several families in terms of the significant primary structural homology, while the classification is not always straightforward. These lectins can exert immense biological functions mainly through their specific carbohydrate-protein interactions in a variety of situations. In cancer biology, aberrant glycosylation changes on many glycoproteins and glycolipids are often observed and numerous experimental evidences have revealed that these structural changes are related to tumor malignancy. Galectins, which are broadly expressed animal lectins, can play crucial biological roles in tumor cell-cell or cell-matrix interactions through their binding activities to the tumor cell surface carbohydrate determinants. Certain galectin family proteins have also shown to affect tumor cell survival, signal transduction, and proliferation mainly inside the cell. Selectins, which are one of the C-type lectins and expressed leukocytes and/or vascular endothelium, can also play an immense role in tumor cell adhesion and invasion. In addition, certain annexin family proteins, which are originally known as phospholipid binding proteins, have been revealed to possess the carbohydrate binding activity, and these novel functions in tumors are being unveiled. Understanding how carbohydrate-protein interactions function in tumor cells will be one of the important goals in cancer research. This review focuses on the role of these lectins and their ligands in cancer progression and metastasis.
Cell Death and Disease, Aug 1, 2013
American Journal of Pathology, Apr 1, 2009
Galectin-3 , a -galactoside-binding protein , has been implicated in a variety of biological fun... more Galectin-3 , a -galactoside-binding protein , has been implicated in a variety of biological functions including cell proliferation , apoptosis , angiogenesis , tumor progression , and metastasis. The present study was undertaken to understand the role of galectin-3 in the progression of prostate cancer. Immunohistochemical analysis of galectin-3 expression revealed that galectin-3 was cleaved during the progression of prostate cancer. Galectin-3 knockdown by small interfering RNA (siRNA) was associated with reduced cell migration, invasion, cell proliferation , anchorage-independent colony formation , and tumor growth in the prostates of nude mice. Galectin-3 knockdown in human prostate cancer PC3 cells led to cell-cycle arrest at G 1 phase , up-regulation of nuclear p21 , and hypophosphorylation of the retinoblastoma tumor suppressor protein (pRb) , with no effect on cyclin D1 , cyclin E , cyclin-dependent kinases (CDK2 and CDK4) , and p27 protein expression levels. The data obtained here implicate galectin-3 in prostate cancer progression and suggest that galectin-3 may serve as both a diagnostic marker and therapeutic target for future disease treatments.
Cell Death and Disease, Nov 18, 2010
Prostate cancer will develop chemoresistance following a period of chemotherapy. This is due, in ... more Prostate cancer will develop chemoresistance following a period of chemotherapy. This is due, in part, to the acquisition of antiapoptotic properties by the cancer cells and, therefore, development of novel strategies for treatment is of critical need. Here, we attempt to clarify the role of the antiapoptotic molecule galectin-3 in prostate cancer cells using siRNA and antagonist approaches. The data showed that Gal-3 inhibition by siRNA or its antagonist GCS-100/modified citrus pectin (MCP) increased cisplatin-induced apoptosis of PC3 cells. Recent studies have indicated that cisplatin-induced apoptosis may be mediated by calpain, a calcium-dependent protease, as its activation leads to cleavage of androgen receptor into an androgen-independent isoform in prostate cancer cells. Thus, we examined whether calpain activation is associated with the Gal-3 function of regulating apoptosis. Here, we report that Gal-3 inhibition by siRNA or GCS-100/MCP enhances calpain activation, whereas Gal-3 overexpression inhibits it. Inhibition of calpain using its inhibitor and/or siRNA attenuated the proapoptotic effect of Gal-3 inhibition, suggesting that calpain activation may be a novel mechanism for the proapoptotic effect of Gal-3 inhibition. Thus, a paradigm shift for treating prostate cancer is suggested whereby a combination of a non-toxic anti-Gal-3 drug together with a toxic chemotherapeutic agent could serve as a novel therapeutic modality for chemoresistant prostate cancers.
Cancer and Metastasis Reviews, 2020
In the past decade, the development of immune checkpoint inhibitors in oncological clinical setti... more In the past decade, the development of immune checkpoint inhibitors in oncological clinical settings was in the forefront. However, the interest in musculoskeletal tumor patients as candidates for checkpoint inhibition remains underserved. Here, we are forwarding evidence proposing that galectin-3 (Gal-3) is an additional immune factor in the checkpoint processes. This review is the result of a large-scale cohort study depicting that overexpression of Gal-3 was widely prevalent in patients with musculoskeletal tumors, whereas T cell infiltrations were generally suppressed in the tumor microenvironment. Targeting Gal-3 would serve as a novel immune checkpoint inhibitor candidate in patients afflicted with aggressive musculoskeletal tumors.
Cancer metastasis reviews, Jan 11, 2016
The skeleton is frequently a secondary growth site of disseminated cancers, often leading to pain... more The skeleton is frequently a secondary growth site of disseminated cancers, often leading to painful and devastating clinical outcomes. Metastatic cancer distorts bone marrow homeostasis through tumor-derived factors, which shapes different bone tumor microenvironments depending on the tumor cells' origin. Here, we propose a novel insight on tumor-secreted Galectin-3 (Gal-3) that controls the induction of an inflammatory cascade, differentiation of osteoblasts, osteoclasts, and bone marrow cells, resulting in bone destruction and therapeutic failure. In the approaching era of personalized medicine, the current treatment modalities targeting bone metastatic environments are provided to the patient with limited consideration of the cancer cells' origin. Our new outlook suggests delivering individual tumor microenvironment treatments based on the expression level/activity/functionality of tumor-derived factors, rather than utilizing a commonly shared therapeutic umbrella. The n...
Neoplasia (New York, N.Y.), 2014
Patients with bone cancer metastasis suffer from unbearable pain and bone fractures due to bone r... more Patients with bone cancer metastasis suffer from unbearable pain and bone fractures due to bone remodeling. This is caused by tumor cells that disturb the bone microenvironment. Here, we have investigated the role of tumor-secreted sugar-binding protein, i.e., galectin-3, on osteoblast differentiation and report that it downregulates the expression of osteoblast differentiation markers, e.g., RUNX2, SP7, ALPL, COL1A1, IBSP, and BGLAP, of treated human fetal osteoblast (hFOB) cells. Co-culturing of hFOB cells with human breast cancer BT-549 and prostate cancer LNCaP cells harboring galectin-3 has resulted in inhibition of osteoblast differentiation by the secreted galectin-3 into culture medium. The inhibitory effect of galectin-3 was found to be through its binding to Notch1 in a sugar-dependent manner that has led to accelerated Notch1 cleavage and activation of Notch signaling. Taken together, our findings show that soluble galectin-3 in the bone microenvironment niche regulates b...
Cancer research, 2003
Galectin (Gal)-3, a M(r) 31000 member of the beta-galactoside-binding protein family, is a multif... more Galectin (Gal)-3, a M(r) 31000 member of the beta-galactoside-binding protein family, is a multifunctional protein implicated in a variety of biological functions, including tumor cell adhesion, proliferation, differentiation, angiogenesis, apoptosis, cancer progression, and metastasis. Here, we report that secreted extracellular Gal-3 can signal apoptosis of human T leukemia cell lines, human peripheral blood mononuclear cells, and activated mouse T cells after binding to cell surface glycoconjugate receptors through carbohydrate-dependent interactions because the apoptotic effect was found to be inhibited by lactose, specific sugar inhibitor, and to be dose dependent. However, the apoptosis sensitivity to Gal-3 varied among the different cell lines tested. We report that Gal-3-null Jurkat, CEM, and MOLT-4 cells were significantly more sensitive to exogenous Gal-3 than SKW6.4 and H9 cells, which express Gal-3, suggesting a cross-talk between the antiapoptotic activity of intracellu...
Cancer research, Jan 15, 1999
Galectin-3 is a member of a growing family of animal beta-galactoside-binding proteins shown to b... more Galectin-3 is a member of a growing family of animal beta-galactoside-binding proteins shown to be involved in cell growth, differentiation, apoptosis resistance, and tumor progression. In the present study, we investigated whether galectin-3 can protect against apoptosis induced by the loss of cell anchorage (anoikis). Because studies suggest that cellular sensitivity to anoikis is associated with cell cycle regulation, we examined the role of galectin-3 on cell cycle regulation. Although BT549 cells (human breast epithelial cells) undergo anoikis, galectin-3-overexpressing BT549 cells respond to the loss of cell adhesion by inducing G1 arrest without detectable cell death. Galectin-3-mediated G1 arrest involves down-regulation of G1-S cyclin levels (cyclin E and cyclin A) and up-regulation of their inhibitory protein levels (p21(WAF1/CIP1) and p27KIP1). After the loss of cell anchorage, Rb protein becomes hypophosphorylated in galectin-3-overexpressing cells, as predicted from the...
Oncogene, 2002
Galectin-3 is a multifunctional carbohydrate-binding protein found in the nucleus, cytoplasm and ... more Galectin-3 is a multifunctional carbohydrate-binding protein found in the nucleus, cytoplasm and the extracellular milieu. Nuclear galectin-3 expression is associated with cell proliferation, and its role in pre-mRNA splicing has been suggested. In this report, we investigated the role of galectin-3 on cyclin D 1 gene expression, a critical inducer of the cell cycle and a potential oncogene in human cancer. We found that galectin-3 induces cyclin D 1 promoter activity in human breast epithelial cells independent of cell adhesion through multiple cis-elements, including the SP1 and CRE sites. We present evidence that galectin-3 induction of the cyclin D 1 promoter may result from enhancement/ stabilization of nuclear protein-DNA complex formation at the CRE site of the cyclin D 1 promoter. We also show that galectin-3 cooperates with, but does not depend on, pRb for cyclin D 1 promoter activation. The present study reveals a growth promoting activity of galectin-3 through cyclin D 1 induction, and suggests a novel function of nuclear galectin-3 in the regulation of gene transcription.
Neoplasia, 2007
Angiosarcoma (ASA) in humans and hemangiosarcoma (HSA) in dogs are deadly neoplastic diseases cha... more Angiosarcoma (ASA) in humans and hemangiosarcoma (HSA) in dogs are deadly neoplastic diseases characterized by an aggressive growth of malignant cells with endothelial phenotype, widespread metastasis, and poor response to chemotherapy. Galectin-3 (Gal-3), a B-galactoside-binding lectin implicated in tumor progression and metastasis, endothelial cell biology and angiogenesis, and regulation of apoptosis and neoplastic cell response to cytotoxic drugs, has not been studied before in tumors arising from malignant endothelia. Here, we tested the hypothesis that Gal-3 could be widely expressed in human ASA and canine HSA and could play an important role in malignant endothelial cell biology. Immunohistochemical analysis demonstrated that 100% of the human ASA (10 of 10) and canine HSA (17 of 17) samples analyzed expressed Gal-3. Two carbohydrate-based Gal-3 inhibitors, modified citrus pectin (MCP) and lactulosyl-L-leucine (LL), caused a dose-dependent reduction of SVR murine ASA cell clonogenic survival through the inhibition of Gal-3 antiapoptotic function. Furthermore, both MCP and LL sensitized SVR cells to the cytotoxic drug doxorubicin to a degree sufficient to reduce the in vitro IC 50 of doxorubicin by 10.7-fold and 3.6-fold, respectively. These results highlight the important role of Gal-3 in the biology of ASA and identify Gal-3 as a potential therapeutic target in tumors arising from malignant endothelial cells.
Molecular and Cellular Biology, 2004
Galectin-3 (Gal-3), a member of the β-galactoside binding protein family containing the NWGR anti... more Galectin-3 (Gal-3), a member of the β-galactoside binding protein family containing the NWGR antideath motif of the Bcl-2 protein family, is involved in various aspects of cancer progression. Previously, it has been shown that the antiapoptotic activity of Gal-3 is regulated by the phosphorylation at Ser 6 by casein kinase 1 (CK1). Here we questioned how phosphorylation at Ser 6 regulates Gal-3 function. We have generated serine-to-alanine (S6A) and serine-to-glutamic acid (S6E) Gal-3 mutants and transfected them into the BT-549 human breast carcinoma cell line, which does not express Gal-3. BT-549 cell clones expressing wild-type (wt) and mutant Gal-3 were exposed to chemotherapeutic anticancer drugs. In response to the apoptotic insults, phosphorylated wt Gal-3 was exported from the nucleus to the cytoplasm and protected the BT-549 cells from drug-induced apoptosis while nonphosphorylated mutant Gal-3 neither was exported from the nucleus nor protected BT-549 cells from drug-induc...
Journal of Biological Chemistry, 2002
Journal of Bioenergetics and Biomembranes, 2007
During the past decade, extensive progress has been made toward understanding the molecular basis... more During the past decade, extensive progress has been made toward understanding the molecular basis for the regulation of apoptosis. In mammalian cells undergoing apoptosis, two distinct mechanisms or pathways are operated and are triggered by cell death stimuli from intra-or extracellular environments, namely the intrinsic or extrinsic pathways, resulting in mitochondrial membrane depolarization. Several lines of evidence from our laboratories and others have indicated that galectin-3 plays an important role in these pathways by binding to various ligands. Here the authors provide a brief discussion on the role of endogenous or extra-cellular galectin-3 in the regulation of apoptosis and how it could be used as a therapeutic target using natural plant products as its functional inhibitors.
International Journal of Cancer, 2010
Galectin-3 cleavage is related to progression of human breast and prostate cancer and is partly r... more Galectin-3 cleavage is related to progression of human breast and prostate cancer and is partly responsible for tumor growth, angiogenesis and apoptosis resistance in mouse models. A functional polymorphism in galectin-3 gene, determining its susceptibility to cleavage by matrix metalloproteinases (MMPs)-2/-9 is related to racial disparity in breast cancer incidence in Asian and Caucasian women. The purpose of our study is to evaluate (i) if cleavage of galectin-3 could be related to angiogenesis during the progression of human breast cancer, (ii) the role of cleaved galectin-3 in induction of angiogenesis and (iii) determination of the galectin-3 domain responsible for induction of angiogenic response. Galectin-3 null breast cancer cells BT-459 were transfected with either cleavable full-length galectin-3 or its fragmented peptides. Chemotaxis, chemoinvasion, heterotypic aggregation, epithelial-endothelial cell interactions and angiogenesis were compared to noncleavable galectin-3. BT-549-H 64 cells harboring cleavable galectin-3 exhibited increased chemotaxis, invasion and interactions with endothelial cells resulting in angiogenesis and 3D morphogenesis compared to BT-549-P 64 cells harboring noncleavable galectin-3. BT-549-H 64 cells induced increased migration and phosphorylation of focal adhesion kinase in migrating endothelial cells. Endothelial cells cocultured with BT-549 cells transfected with galectin-3 peptides indicate that amino acids 1-62 and 33-250 stimulate migration and morphogenesis of endothelial cells. Immunohistochemical analysis of blood vessel density and galectin-3 cleavage in a breast cancer progression tissue array support the in vitro findings. We conclude that the cleavage of the N terminus of galectin-3 followed by its release in the tumor microenvironment in part leads to breast cancer angiogenesis and progression.
Carbohydrate Research, 2009
In this minireview, we examine the ability of modified citrus pectin (MCP), a complex water solub... more In this minireview, we examine the ability of modified citrus pectin (MCP), a complex water soluble indigestible polysaccharide obtained from the peel and pulp of citrus fruits and modified by means of high pH and temperature treatment, to affect numerous rate-limiting steps in cancer metastasis. The anti-adhesive properties of MCP as well as its potential for increasing apoptotic responses of tumor cells to chemotherapy by inhibiting galectin-3 anti-apoptotic function are discussed in the light of a potential use of this carbohydrate-based substance in the treatment of multiple human malignancies.
Cancer Research, 2006
Galectin-3 (Gal-3), a pleiotropic β-galactoside–binding protein, was shown to be involved in seve... more Galectin-3 (Gal-3), a pleiotropic β-galactoside–binding protein, was shown to be involved in several nuclear-dependent functions, including up-regulation of transcriptional factors, RNA processing, and cell cycle regulation. Gal-3 compartmentalization in the nucleus versus the cytoplasm affects, in part, the malignant phenotype of various cancers. However, to date, the mechanism by which Gal-3 translocates into the nucleus remains debatable. Thus, we have constructed and expressed a variety of fusion proteins containing deletion mutants of Gal-3 fused with monomers, dimers, and trimers of enhanced green fluorescent protein and searched for the Gal-3 sequence motifs essential for its nuclear localization in vivo. In addition, a digitonin-permeabilized, cell-free transport in vitro assay was used to directly examine the mechanism of Gal-3 nuclear import. Partial deletions of the COOH-terminal region (114-250) of the human Gal-3 significantly decreases its nuclear translocation, wherea...
Cancer and Metastasis Reviews, 2007
Galectin-3 (Gal-3), a member of the β-galactoside-binding gene family, distributes inside and out... more Galectin-3 (Gal-3), a member of the β-galactoside-binding gene family, distributes inside and outside the cell and has pleiotropic biological functions such as cell growth, cell adhesion, cellcell interaction, and mRNA processing in a specific situation. In particular, Gal-3 in the nucleus plays a pivotal role in the regulation of cancer-related gene expression, including cyclin D1, TTF-1 and MUC2, presumably associated with tumor progression. Therefore, to understand the mechanism of nuclear import of Gal-3 is very significant and might be developed to the new approach for the cancer treatment. In this review, we focus on the role of Gal-3 in the nucleus and the molecular mechanism of nuclear import pathways of Gal-3, providing the hints for the inhibition of Gal-3 function.
Oncotarget, Sep 16, 2014
This is an open-access article distributed under the terms of the Creative Commons Attribution Li... more This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Anti-cancer Agents in Medicinal Chemistry, 2008
Lectins are a group of specific proteins that preferentially bind to carbohydrates inside and out... more Lectins are a group of specific proteins that preferentially bind to carbohydrates inside and outside cells. To date, an increasing number of animal lectins have been found and categorized into several families in terms of the significant primary structural homology, while the classification is not always straightforward. These lectins can exert immense biological functions mainly through their specific carbohydrate-protein interactions in a variety of situations. In cancer biology, aberrant glycosylation changes on many glycoproteins and glycolipids are often observed and numerous experimental evidences have revealed that these structural changes are related to tumor malignancy. Galectins, which are broadly expressed animal lectins, can play crucial biological roles in tumor cell-cell or cell-matrix interactions through their binding activities to the tumor cell surface carbohydrate determinants. Certain galectin family proteins have also shown to affect tumor cell survival, signal transduction, and proliferation mainly inside the cell. Selectins, which are one of the C-type lectins and expressed leukocytes and/or vascular endothelium, can also play an immense role in tumor cell adhesion and invasion. In addition, certain annexin family proteins, which are originally known as phospholipid binding proteins, have been revealed to possess the carbohydrate binding activity, and these novel functions in tumors are being unveiled. Understanding how carbohydrate-protein interactions function in tumor cells will be one of the important goals in cancer research. This review focuses on the role of these lectins and their ligands in cancer progression and metastasis.
Cell Death and Disease, Aug 1, 2013
American Journal of Pathology, Apr 1, 2009
Galectin-3 , a -galactoside-binding protein , has been implicated in a variety of biological fun... more Galectin-3 , a -galactoside-binding protein , has been implicated in a variety of biological functions including cell proliferation , apoptosis , angiogenesis , tumor progression , and metastasis. The present study was undertaken to understand the role of galectin-3 in the progression of prostate cancer. Immunohistochemical analysis of galectin-3 expression revealed that galectin-3 was cleaved during the progression of prostate cancer. Galectin-3 knockdown by small interfering RNA (siRNA) was associated with reduced cell migration, invasion, cell proliferation , anchorage-independent colony formation , and tumor growth in the prostates of nude mice. Galectin-3 knockdown in human prostate cancer PC3 cells led to cell-cycle arrest at G 1 phase , up-regulation of nuclear p21 , and hypophosphorylation of the retinoblastoma tumor suppressor protein (pRb) , with no effect on cyclin D1 , cyclin E , cyclin-dependent kinases (CDK2 and CDK4) , and p27 protein expression levels. The data obtained here implicate galectin-3 in prostate cancer progression and suggest that galectin-3 may serve as both a diagnostic marker and therapeutic target for future disease treatments.
Cell Death and Disease, Nov 18, 2010
Prostate cancer will develop chemoresistance following a period of chemotherapy. This is due, in ... more Prostate cancer will develop chemoresistance following a period of chemotherapy. This is due, in part, to the acquisition of antiapoptotic properties by the cancer cells and, therefore, development of novel strategies for treatment is of critical need. Here, we attempt to clarify the role of the antiapoptotic molecule galectin-3 in prostate cancer cells using siRNA and antagonist approaches. The data showed that Gal-3 inhibition by siRNA or its antagonist GCS-100/modified citrus pectin (MCP) increased cisplatin-induced apoptosis of PC3 cells. Recent studies have indicated that cisplatin-induced apoptosis may be mediated by calpain, a calcium-dependent protease, as its activation leads to cleavage of androgen receptor into an androgen-independent isoform in prostate cancer cells. Thus, we examined whether calpain activation is associated with the Gal-3 function of regulating apoptosis. Here, we report that Gal-3 inhibition by siRNA or GCS-100/MCP enhances calpain activation, whereas Gal-3 overexpression inhibits it. Inhibition of calpain using its inhibitor and/or siRNA attenuated the proapoptotic effect of Gal-3 inhibition, suggesting that calpain activation may be a novel mechanism for the proapoptotic effect of Gal-3 inhibition. Thus, a paradigm shift for treating prostate cancer is suggested whereby a combination of a non-toxic anti-Gal-3 drug together with a toxic chemotherapeutic agent could serve as a novel therapeutic modality for chemoresistant prostate cancers.
Cancer and Metastasis Reviews, 2020
In the past decade, the development of immune checkpoint inhibitors in oncological clinical setti... more In the past decade, the development of immune checkpoint inhibitors in oncological clinical settings was in the forefront. However, the interest in musculoskeletal tumor patients as candidates for checkpoint inhibition remains underserved. Here, we are forwarding evidence proposing that galectin-3 (Gal-3) is an additional immune factor in the checkpoint processes. This review is the result of a large-scale cohort study depicting that overexpression of Gal-3 was widely prevalent in patients with musculoskeletal tumors, whereas T cell infiltrations were generally suppressed in the tumor microenvironment. Targeting Gal-3 would serve as a novel immune checkpoint inhibitor candidate in patients afflicted with aggressive musculoskeletal tumors.
Cancer metastasis reviews, Jan 11, 2016
The skeleton is frequently a secondary growth site of disseminated cancers, often leading to pain... more The skeleton is frequently a secondary growth site of disseminated cancers, often leading to painful and devastating clinical outcomes. Metastatic cancer distorts bone marrow homeostasis through tumor-derived factors, which shapes different bone tumor microenvironments depending on the tumor cells' origin. Here, we propose a novel insight on tumor-secreted Galectin-3 (Gal-3) that controls the induction of an inflammatory cascade, differentiation of osteoblasts, osteoclasts, and bone marrow cells, resulting in bone destruction and therapeutic failure. In the approaching era of personalized medicine, the current treatment modalities targeting bone metastatic environments are provided to the patient with limited consideration of the cancer cells' origin. Our new outlook suggests delivering individual tumor microenvironment treatments based on the expression level/activity/functionality of tumor-derived factors, rather than utilizing a commonly shared therapeutic umbrella. The n...
Neoplasia (New York, N.Y.), 2014
Patients with bone cancer metastasis suffer from unbearable pain and bone fractures due to bone r... more Patients with bone cancer metastasis suffer from unbearable pain and bone fractures due to bone remodeling. This is caused by tumor cells that disturb the bone microenvironment. Here, we have investigated the role of tumor-secreted sugar-binding protein, i.e., galectin-3, on osteoblast differentiation and report that it downregulates the expression of osteoblast differentiation markers, e.g., RUNX2, SP7, ALPL, COL1A1, IBSP, and BGLAP, of treated human fetal osteoblast (hFOB) cells. Co-culturing of hFOB cells with human breast cancer BT-549 and prostate cancer LNCaP cells harboring galectin-3 has resulted in inhibition of osteoblast differentiation by the secreted galectin-3 into culture medium. The inhibitory effect of galectin-3 was found to be through its binding to Notch1 in a sugar-dependent manner that has led to accelerated Notch1 cleavage and activation of Notch signaling. Taken together, our findings show that soluble galectin-3 in the bone microenvironment niche regulates b...
Cancer research, 2003
Galectin (Gal)-3, a M(r) 31000 member of the beta-galactoside-binding protein family, is a multif... more Galectin (Gal)-3, a M(r) 31000 member of the beta-galactoside-binding protein family, is a multifunctional protein implicated in a variety of biological functions, including tumor cell adhesion, proliferation, differentiation, angiogenesis, apoptosis, cancer progression, and metastasis. Here, we report that secreted extracellular Gal-3 can signal apoptosis of human T leukemia cell lines, human peripheral blood mononuclear cells, and activated mouse T cells after binding to cell surface glycoconjugate receptors through carbohydrate-dependent interactions because the apoptotic effect was found to be inhibited by lactose, specific sugar inhibitor, and to be dose dependent. However, the apoptosis sensitivity to Gal-3 varied among the different cell lines tested. We report that Gal-3-null Jurkat, CEM, and MOLT-4 cells were significantly more sensitive to exogenous Gal-3 than SKW6.4 and H9 cells, which express Gal-3, suggesting a cross-talk between the antiapoptotic activity of intracellu...
Cancer research, Jan 15, 1999
Galectin-3 is a member of a growing family of animal beta-galactoside-binding proteins shown to b... more Galectin-3 is a member of a growing family of animal beta-galactoside-binding proteins shown to be involved in cell growth, differentiation, apoptosis resistance, and tumor progression. In the present study, we investigated whether galectin-3 can protect against apoptosis induced by the loss of cell anchorage (anoikis). Because studies suggest that cellular sensitivity to anoikis is associated with cell cycle regulation, we examined the role of galectin-3 on cell cycle regulation. Although BT549 cells (human breast epithelial cells) undergo anoikis, galectin-3-overexpressing BT549 cells respond to the loss of cell adhesion by inducing G1 arrest without detectable cell death. Galectin-3-mediated G1 arrest involves down-regulation of G1-S cyclin levels (cyclin E and cyclin A) and up-regulation of their inhibitory protein levels (p21(WAF1/CIP1) and p27KIP1). After the loss of cell anchorage, Rb protein becomes hypophosphorylated in galectin-3-overexpressing cells, as predicted from the...
Oncogene, 2002
Galectin-3 is a multifunctional carbohydrate-binding protein found in the nucleus, cytoplasm and ... more Galectin-3 is a multifunctional carbohydrate-binding protein found in the nucleus, cytoplasm and the extracellular milieu. Nuclear galectin-3 expression is associated with cell proliferation, and its role in pre-mRNA splicing has been suggested. In this report, we investigated the role of galectin-3 on cyclin D 1 gene expression, a critical inducer of the cell cycle and a potential oncogene in human cancer. We found that galectin-3 induces cyclin D 1 promoter activity in human breast epithelial cells independent of cell adhesion through multiple cis-elements, including the SP1 and CRE sites. We present evidence that galectin-3 induction of the cyclin D 1 promoter may result from enhancement/ stabilization of nuclear protein-DNA complex formation at the CRE site of the cyclin D 1 promoter. We also show that galectin-3 cooperates with, but does not depend on, pRb for cyclin D 1 promoter activation. The present study reveals a growth promoting activity of galectin-3 through cyclin D 1 induction, and suggests a novel function of nuclear galectin-3 in the regulation of gene transcription.
Neoplasia, 2007
Angiosarcoma (ASA) in humans and hemangiosarcoma (HSA) in dogs are deadly neoplastic diseases cha... more Angiosarcoma (ASA) in humans and hemangiosarcoma (HSA) in dogs are deadly neoplastic diseases characterized by an aggressive growth of malignant cells with endothelial phenotype, widespread metastasis, and poor response to chemotherapy. Galectin-3 (Gal-3), a B-galactoside-binding lectin implicated in tumor progression and metastasis, endothelial cell biology and angiogenesis, and regulation of apoptosis and neoplastic cell response to cytotoxic drugs, has not been studied before in tumors arising from malignant endothelia. Here, we tested the hypothesis that Gal-3 could be widely expressed in human ASA and canine HSA and could play an important role in malignant endothelial cell biology. Immunohistochemical analysis demonstrated that 100% of the human ASA (10 of 10) and canine HSA (17 of 17) samples analyzed expressed Gal-3. Two carbohydrate-based Gal-3 inhibitors, modified citrus pectin (MCP) and lactulosyl-L-leucine (LL), caused a dose-dependent reduction of SVR murine ASA cell clonogenic survival through the inhibition of Gal-3 antiapoptotic function. Furthermore, both MCP and LL sensitized SVR cells to the cytotoxic drug doxorubicin to a degree sufficient to reduce the in vitro IC 50 of doxorubicin by 10.7-fold and 3.6-fold, respectively. These results highlight the important role of Gal-3 in the biology of ASA and identify Gal-3 as a potential therapeutic target in tumors arising from malignant endothelial cells.
Molecular and Cellular Biology, 2004
Galectin-3 (Gal-3), a member of the β-galactoside binding protein family containing the NWGR anti... more Galectin-3 (Gal-3), a member of the β-galactoside binding protein family containing the NWGR antideath motif of the Bcl-2 protein family, is involved in various aspects of cancer progression. Previously, it has been shown that the antiapoptotic activity of Gal-3 is regulated by the phosphorylation at Ser 6 by casein kinase 1 (CK1). Here we questioned how phosphorylation at Ser 6 regulates Gal-3 function. We have generated serine-to-alanine (S6A) and serine-to-glutamic acid (S6E) Gal-3 mutants and transfected them into the BT-549 human breast carcinoma cell line, which does not express Gal-3. BT-549 cell clones expressing wild-type (wt) and mutant Gal-3 were exposed to chemotherapeutic anticancer drugs. In response to the apoptotic insults, phosphorylated wt Gal-3 was exported from the nucleus to the cytoplasm and protected the BT-549 cells from drug-induced apoptosis while nonphosphorylated mutant Gal-3 neither was exported from the nucleus nor protected BT-549 cells from drug-induc...
Journal of Biological Chemistry, 2002
Journal of Bioenergetics and Biomembranes, 2007
During the past decade, extensive progress has been made toward understanding the molecular basis... more During the past decade, extensive progress has been made toward understanding the molecular basis for the regulation of apoptosis. In mammalian cells undergoing apoptosis, two distinct mechanisms or pathways are operated and are triggered by cell death stimuli from intra-or extracellular environments, namely the intrinsic or extrinsic pathways, resulting in mitochondrial membrane depolarization. Several lines of evidence from our laboratories and others have indicated that galectin-3 plays an important role in these pathways by binding to various ligands. Here the authors provide a brief discussion on the role of endogenous or extra-cellular galectin-3 in the regulation of apoptosis and how it could be used as a therapeutic target using natural plant products as its functional inhibitors.
International Journal of Cancer, 2010
Galectin-3 cleavage is related to progression of human breast and prostate cancer and is partly r... more Galectin-3 cleavage is related to progression of human breast and prostate cancer and is partly responsible for tumor growth, angiogenesis and apoptosis resistance in mouse models. A functional polymorphism in galectin-3 gene, determining its susceptibility to cleavage by matrix metalloproteinases (MMPs)-2/-9 is related to racial disparity in breast cancer incidence in Asian and Caucasian women. The purpose of our study is to evaluate (i) if cleavage of galectin-3 could be related to angiogenesis during the progression of human breast cancer, (ii) the role of cleaved galectin-3 in induction of angiogenesis and (iii) determination of the galectin-3 domain responsible for induction of angiogenic response. Galectin-3 null breast cancer cells BT-459 were transfected with either cleavable full-length galectin-3 or its fragmented peptides. Chemotaxis, chemoinvasion, heterotypic aggregation, epithelial-endothelial cell interactions and angiogenesis were compared to noncleavable galectin-3. BT-549-H 64 cells harboring cleavable galectin-3 exhibited increased chemotaxis, invasion and interactions with endothelial cells resulting in angiogenesis and 3D morphogenesis compared to BT-549-P 64 cells harboring noncleavable galectin-3. BT-549-H 64 cells induced increased migration and phosphorylation of focal adhesion kinase in migrating endothelial cells. Endothelial cells cocultured with BT-549 cells transfected with galectin-3 peptides indicate that amino acids 1-62 and 33-250 stimulate migration and morphogenesis of endothelial cells. Immunohistochemical analysis of blood vessel density and galectin-3 cleavage in a breast cancer progression tissue array support the in vitro findings. We conclude that the cleavage of the N terminus of galectin-3 followed by its release in the tumor microenvironment in part leads to breast cancer angiogenesis and progression.
Carbohydrate Research, 2009
In this minireview, we examine the ability of modified citrus pectin (MCP), a complex water solub... more In this minireview, we examine the ability of modified citrus pectin (MCP), a complex water soluble indigestible polysaccharide obtained from the peel and pulp of citrus fruits and modified by means of high pH and temperature treatment, to affect numerous rate-limiting steps in cancer metastasis. The anti-adhesive properties of MCP as well as its potential for increasing apoptotic responses of tumor cells to chemotherapy by inhibiting galectin-3 anti-apoptotic function are discussed in the light of a potential use of this carbohydrate-based substance in the treatment of multiple human malignancies.
Cancer Research, 2006
Galectin-3 (Gal-3), a pleiotropic β-galactoside–binding protein, was shown to be involved in seve... more Galectin-3 (Gal-3), a pleiotropic β-galactoside–binding protein, was shown to be involved in several nuclear-dependent functions, including up-regulation of transcriptional factors, RNA processing, and cell cycle regulation. Gal-3 compartmentalization in the nucleus versus the cytoplasm affects, in part, the malignant phenotype of various cancers. However, to date, the mechanism by which Gal-3 translocates into the nucleus remains debatable. Thus, we have constructed and expressed a variety of fusion proteins containing deletion mutants of Gal-3 fused with monomers, dimers, and trimers of enhanced green fluorescent protein and searched for the Gal-3 sequence motifs essential for its nuclear localization in vivo. In addition, a digitonin-permeabilized, cell-free transport in vitro assay was used to directly examine the mechanism of Gal-3 nuclear import. Partial deletions of the COOH-terminal region (114-250) of the human Gal-3 significantly decreases its nuclear translocation, wherea...
Cancer and Metastasis Reviews, 2007
Galectin-3 (Gal-3), a member of the β-galactoside-binding gene family, distributes inside and out... more Galectin-3 (Gal-3), a member of the β-galactoside-binding gene family, distributes inside and outside the cell and has pleiotropic biological functions such as cell growth, cell adhesion, cellcell interaction, and mRNA processing in a specific situation. In particular, Gal-3 in the nucleus plays a pivotal role in the regulation of cancer-related gene expression, including cyclin D1, TTF-1 and MUC2, presumably associated with tumor progression. Therefore, to understand the mechanism of nuclear import of Gal-3 is very significant and might be developed to the new approach for the cancer treatment. In this review, we focus on the role of Gal-3 in the nucleus and the molecular mechanism of nuclear import pathways of Gal-3, providing the hints for the inhibition of Gal-3 function.