Renato Valencia - Profile on Academia.edu (original) (raw)
Papers by Renato Valencia
Global Change Biology, 2014
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services inc... more Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25°S-61°N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61°C), changes in precipitation (up to AE30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m À2 yr À1 and 3.1 g S m À2 yr À1 ), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
In a 1 ha square plot of terrafirme forest at 260 m elevation in Amazonian Ecuador, all trees wit... more In a 1 ha square plot of terrafirme forest at 260 m elevation in Amazonian Ecuador, all trees with diameter at breast height (dbh) />5 cm were studied. There were 1561 individuals, 473 species, 187 genera and 54 families. Of these, 693 individuals, 307 species, 138 genera and 46 families had a dbh i>10 cm. This is the highest number of tree species ever recorded for a tropical rain forest sample of this size. In both dbh classes, the most species-rich families were: Fabaceae sensu lato (including Mimosaceae and Caesalpiniaceae), Lauraceae and Sapotaceae; the most species-rich genera, were Pouteria, Inga and Protium. The vertical space was partitioned among species: 166 species were found only in the 5-10 dbh cm class and were mostly sub-canopy treelets, and 307 species with dbh t>10 cm were mostly large canopy trees.
Estudios sobre diversidad y ecología de plantas: memorias del II. Congreso Ecuatoriano de Botánica, realizado en la Pontificia Universidad Católica del Ecuador, Quito 16-20 octubre 1995
Congreso Ecuatoriano de Botánica (2, 1995, Quito, Ecuador). Estudios sobre diversidad y ecología de plantas
Plantas únicas del Ecuador que el mundo entero puede perder
Políticas de manejo sostenible de productos forestales no maderables (PFNM)
Plant traits predict inter‐and intraspecific variation in susceptibility to herbivory in a hyperdiverse Neotropical rain forest tree community
Biota máxima: Ecuador biodiverso
Sexual dimorphism in dioecious plants is a common phenomenon that has received widespread attenti... more Sexual dimorphism in dioecious plants is a common phenomenon that has received widespread attention, yet the implications for reproductive function and fitness remain poorly understood. Using data from a long--term study of a population of 839 dioecious Iryanthera hostmannii (Myristicaceae 'nutmeg') trees in a large permanent plot in a lowland tropical rain forest, we examined the effects of greater investment in reproduction by females compared to males for various aspects of life history. Although male trees often produced more inflorescences than females, total dry mass of flowers was roughly equal in two out of three years for both sexes, implying that any investment differential lies in fruit production. There was no difference in the 12--year relative growth rate of males and females, suggesting that females can compensate somehow for their greater reproductive investment, although there were weak suggestions that mortality might have been greater in females. Male flowers opened slightly earlier in the day than female flowers and were short--lived, lasting at most two nights compared to up to four nights in females. Understanding the interacting effects of resource availability (studied here) and pollen movement (currently unknown in Iryanthera) on reproduction is essential in terms of life history theory. Knowledge of reproductive biology is key in considering the ecology and conservation of tropical forest communities.
Palmas ecuatorianas: biología y uso sostenible
Strong radial variation in wood density follows a uniform pattern in two neotropical rain forests
ABSTRACT 1. Wood density (WD) affects plant biomechanics, drought and decay resistance. As a cons... more ABSTRACT 1. Wood density (WD) affects plant biomechanics, drought and decay resistance. As a consequence, WD is an important functional trait related to plant demography and ecosystem processes, which is also used to estimate tree biomass. Radial variation in WD (changes from the centre of the stem to the cambium) affects the strength of the entire stem, but also reflects any changes in wood functional properties that might occur during a tree's lifetime. 2. To understand how WD and radial WD gradients, which were defined as the slope of the relationship between WD and distance to the centre, are related to demographic traits of species, we investigated WD in 335 tree species from a Panamanian moist forest and 501 species from an Ecuadorian rain forest and radial density gradients in 118 and 186 species, respectively, and compared WD with tree growth, mortality and size. 3. WD was negatively related to tree growth and mortality. WD tended to increase towards the outside in trees with low initial density and to decrease towards the outside in trees with high initial density. Radial WD gradients were largely unrelated to tree size and demographic traits, but some families had higher or lower WD gradients at a given inner WD. 4. Inner WD was by far the best predictor of radial WD gradients (r 2 = 0·39 for Panama and 0·45 for Ecuador) and this relationship was indistinguishable between the two rain forests. This suggests a broadly uniform function of WD variation, likely responding to mechanical requirements during ontogeny. We discuss the factors potentially driving radial increases or decreases in WD and suggest ways to elucidate the relative importance of tree mechanics, hydraulic safety or decay resistance. 5. We also discuss that not accounting for radial WD gradients may result in substantial errors in WD of the whole stem and consequently biomass estimates, and recommend sampling density gradients when obtaining density data from tree cores.
Tree species diversity and distribution in a forest plot at Yasuní National Park, Amazonian Ecuador
Yasuni forest dynamics plot, Ecuador
Aim The origins of much Neotropical biodiversity remain a topic of debate, with both palaeogeogra... more Aim The origins of much Neotropical biodiversity remain a topic of debate, with both palaeogeographical and more recent climatic drivers playing a role in diversification both among and within species. Here we use a combination of molecular data to assess genetic variation within and among species in the Neotropical tree genus Cedrela, with a focus on Cedrela odorata, to test hypotheses on the drivers of diversification, to place known ecotypic variation in context and to detect intraspecific phylogeographical structure.
Tropical tree communities are shaped by local-scale habitat heterogeneity in the form of topograp... more Tropical tree communities are shaped by local-scale habitat heterogeneity in the form of topographic and edaphic variation, but the life-history stage at which habitat associations develop remains poorly understood. This is due, in part, to the fact that previous studies have not accounted for the widely disparate sample sizes (number of stems) that result when trees are divided into size classes. We demonstrate that the observed habitat structuring of a community is directly related to the number of individuals in the community. We then compare the relative importance of habitat heterogeneity to tree community structure for saplings, juveniles and adult trees within seven large (24 -50 ha) tropical forest dynamics plots while controlling for sample size. Changes in habitat structuring through tree life stages were small and inconsistent among life stages and study sites. Where found, these differences were an order of magnitude smaller than the findings of previous studies that did not control for sample size. Moreover, community structure and composition were very similar among tree subcommunities of different life stages. We conclude that the structure of these tropical tree communities is established by the time trees are large enough to be included in the census (1 cm diameter at breast height), which indicates that habitat filtering occurs during earlier life stages.
Information about the diversity of tropical microbes, including fungi is relatively scarce. This ... more Information about the diversity of tropical microbes, including fungi is relatively scarce. This study addresses the diversity, spatial distribution and host preference of ectomycorrhizal fungi (EcMF) in a neotropical rainforest site in North East Ecuador. DNA sequence analysis of both symbionts revealed relatively low richness of EcMF as compared with the richness of temperate regions that contrasts with high plant (including host) diversity. EcMF community was positively autocorrelated up to 8.5 ± 1.0-m distance-roughly corresponding to the canopy and potentially rooting area of host individuals. Coccoloba (Polygonaceae), Guapira and Neea (Nyctaginaceae) differed by their most frequent EcMF. Two-thirds of these EcMF preferred one of the host genera, a feature uncommon in boreal forests. Scattered distribution of hosts probably accounts for the low EcMF richness. This study demonstrates that the diversity of plants and their mycorrhizal fungi is not always related and host preference among EcMF can be substantial outside the temperate zone.
tree species delay greening their leaves until full expansion. This strategy is thought to provid... more tree species delay greening their leaves until full expansion. This strategy is thought to provide newly flushing leaves with protection against damage by herbivores by keeping young leaves devoid of nutritive value. Because young leaves suffer the greatest predation from invertebrate herbivores, delayed greening could prevent costly tissue loss. Many species that delay greening also produce anthocyanin pigments in their new leaves, giving them a reddish tint. These anthocyanins may be fungicidal, protect leaves against UV damage or make leaves cryptic to herbivores blind to the red part of the spectrum. † Methods A comprehensive survey was undertaken of seedlings, saplings and mature trees in two diverse tropical forests: a rain forest in western Amazonia (Yasuní National Park, Ecuador) and a deciduous forest in Central America (Barro Colorado Island, Panamá). A test was made of whether individuals and species with delayed greening or red-coloured young leaves showed lower mortality or higher relative growth rates than species that did not. † Key results At both Yasuní and Barro Colorado Island, species with delayed greening or red young leaves comprised significant proportions of the seedling and tree communities. At both sites, significantly lower mortality was found in seedlings and trees with delayed greening and red-coloured young leaves. While there was little effect of leaf colour on the production of new leaves of seedlings, diameter relative growth rates of small trees were lower in species with delayed greening and red-coloured young leaves than in species with regular green leaves, and this effect remained when the trade-off between mortality and growth was accounted for. † Conclusions Herbivores exert strong selection pressure on seedlings for the expression of defence traits. A delayed greening or red-coloured young leaf strategy in seedlings appears to be associated with higher survival for a given growth rate, and may thus influence the species composition of later life stages.
Biogeosciences Discussions, 2014
Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the globa... more Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha −1 ) at spatial scales ranging from 5 to 250 m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3 % for replicate 0.1 ha subplots within a single large plot, and 16.6 % for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change
by Perry Ong, Tomáš Vrška, Alberto Vicentini, Jonathan Myers, Keping Ma, Renato Valencia, Xiangcheng Mi, Lisa Korte, Sarayudh Bunyavejchewin, James Lutz, Shawn Lum, Keith Clay, Fangliang He, Jennifer Baltzer, S. Hubbell, and Alexandre A de Oliveira
Global Change Biology, 2014
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services inc... more Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25°S-61°N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the…
Global Change Biology, 2014
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services inc... more Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25°S-61°N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61°C), changes in precipitation (up to AE30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m À2 yr À1 and 3.1 g S m À2 yr À1 ), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
In a 1 ha square plot of terrafirme forest at 260 m elevation in Amazonian Ecuador, all trees wit... more In a 1 ha square plot of terrafirme forest at 260 m elevation in Amazonian Ecuador, all trees with diameter at breast height (dbh) />5 cm were studied. There were 1561 individuals, 473 species, 187 genera and 54 families. Of these, 693 individuals, 307 species, 138 genera and 46 families had a dbh i>10 cm. This is the highest number of tree species ever recorded for a tropical rain forest sample of this size. In both dbh classes, the most species-rich families were: Fabaceae sensu lato (including Mimosaceae and Caesalpiniaceae), Lauraceae and Sapotaceae; the most species-rich genera, were Pouteria, Inga and Protium. The vertical space was partitioned among species: 166 species were found only in the 5-10 dbh cm class and were mostly sub-canopy treelets, and 307 species with dbh t>10 cm were mostly large canopy trees.
Estudios sobre diversidad y ecología de plantas: memorias del II. Congreso Ecuatoriano de Botánica, realizado en la Pontificia Universidad Católica del Ecuador, Quito 16-20 octubre 1995
Congreso Ecuatoriano de Botánica (2, 1995, Quito, Ecuador). Estudios sobre diversidad y ecología de plantas
Plantas únicas del Ecuador que el mundo entero puede perder
Políticas de manejo sostenible de productos forestales no maderables (PFNM)
Plant traits predict inter‐and intraspecific variation in susceptibility to herbivory in a hyperdiverse Neotropical rain forest tree community
Biota máxima: Ecuador biodiverso
Sexual dimorphism in dioecious plants is a common phenomenon that has received widespread attenti... more Sexual dimorphism in dioecious plants is a common phenomenon that has received widespread attention, yet the implications for reproductive function and fitness remain poorly understood. Using data from a long--term study of a population of 839 dioecious Iryanthera hostmannii (Myristicaceae 'nutmeg') trees in a large permanent plot in a lowland tropical rain forest, we examined the effects of greater investment in reproduction by females compared to males for various aspects of life history. Although male trees often produced more inflorescences than females, total dry mass of flowers was roughly equal in two out of three years for both sexes, implying that any investment differential lies in fruit production. There was no difference in the 12--year relative growth rate of males and females, suggesting that females can compensate somehow for their greater reproductive investment, although there were weak suggestions that mortality might have been greater in females. Male flowers opened slightly earlier in the day than female flowers and were short--lived, lasting at most two nights compared to up to four nights in females. Understanding the interacting effects of resource availability (studied here) and pollen movement (currently unknown in Iryanthera) on reproduction is essential in terms of life history theory. Knowledge of reproductive biology is key in considering the ecology and conservation of tropical forest communities.
Palmas ecuatorianas: biología y uso sostenible
Strong radial variation in wood density follows a uniform pattern in two neotropical rain forests
ABSTRACT 1. Wood density (WD) affects plant biomechanics, drought and decay resistance. As a cons... more ABSTRACT 1. Wood density (WD) affects plant biomechanics, drought and decay resistance. As a consequence, WD is an important functional trait related to plant demography and ecosystem processes, which is also used to estimate tree biomass. Radial variation in WD (changes from the centre of the stem to the cambium) affects the strength of the entire stem, but also reflects any changes in wood functional properties that might occur during a tree's lifetime. 2. To understand how WD and radial WD gradients, which were defined as the slope of the relationship between WD and distance to the centre, are related to demographic traits of species, we investigated WD in 335 tree species from a Panamanian moist forest and 501 species from an Ecuadorian rain forest and radial density gradients in 118 and 186 species, respectively, and compared WD with tree growth, mortality and size. 3. WD was negatively related to tree growth and mortality. WD tended to increase towards the outside in trees with low initial density and to decrease towards the outside in trees with high initial density. Radial WD gradients were largely unrelated to tree size and demographic traits, but some families had higher or lower WD gradients at a given inner WD. 4. Inner WD was by far the best predictor of radial WD gradients (r 2 = 0·39 for Panama and 0·45 for Ecuador) and this relationship was indistinguishable between the two rain forests. This suggests a broadly uniform function of WD variation, likely responding to mechanical requirements during ontogeny. We discuss the factors potentially driving radial increases or decreases in WD and suggest ways to elucidate the relative importance of tree mechanics, hydraulic safety or decay resistance. 5. We also discuss that not accounting for radial WD gradients may result in substantial errors in WD of the whole stem and consequently biomass estimates, and recommend sampling density gradients when obtaining density data from tree cores.
Tree species diversity and distribution in a forest plot at Yasuní National Park, Amazonian Ecuador
Yasuni forest dynamics plot, Ecuador
Aim The origins of much Neotropical biodiversity remain a topic of debate, with both palaeogeogra... more Aim The origins of much Neotropical biodiversity remain a topic of debate, with both palaeogeographical and more recent climatic drivers playing a role in diversification both among and within species. Here we use a combination of molecular data to assess genetic variation within and among species in the Neotropical tree genus Cedrela, with a focus on Cedrela odorata, to test hypotheses on the drivers of diversification, to place known ecotypic variation in context and to detect intraspecific phylogeographical structure.
Tropical tree communities are shaped by local-scale habitat heterogeneity in the form of topograp... more Tropical tree communities are shaped by local-scale habitat heterogeneity in the form of topographic and edaphic variation, but the life-history stage at which habitat associations develop remains poorly understood. This is due, in part, to the fact that previous studies have not accounted for the widely disparate sample sizes (number of stems) that result when trees are divided into size classes. We demonstrate that the observed habitat structuring of a community is directly related to the number of individuals in the community. We then compare the relative importance of habitat heterogeneity to tree community structure for saplings, juveniles and adult trees within seven large (24 -50 ha) tropical forest dynamics plots while controlling for sample size. Changes in habitat structuring through tree life stages were small and inconsistent among life stages and study sites. Where found, these differences were an order of magnitude smaller than the findings of previous studies that did not control for sample size. Moreover, community structure and composition were very similar among tree subcommunities of different life stages. We conclude that the structure of these tropical tree communities is established by the time trees are large enough to be included in the census (1 cm diameter at breast height), which indicates that habitat filtering occurs during earlier life stages.
Information about the diversity of tropical microbes, including fungi is relatively scarce. This ... more Information about the diversity of tropical microbes, including fungi is relatively scarce. This study addresses the diversity, spatial distribution and host preference of ectomycorrhizal fungi (EcMF) in a neotropical rainforest site in North East Ecuador. DNA sequence analysis of both symbionts revealed relatively low richness of EcMF as compared with the richness of temperate regions that contrasts with high plant (including host) diversity. EcMF community was positively autocorrelated up to 8.5 ± 1.0-m distance-roughly corresponding to the canopy and potentially rooting area of host individuals. Coccoloba (Polygonaceae), Guapira and Neea (Nyctaginaceae) differed by their most frequent EcMF. Two-thirds of these EcMF preferred one of the host genera, a feature uncommon in boreal forests. Scattered distribution of hosts probably accounts for the low EcMF richness. This study demonstrates that the diversity of plants and their mycorrhizal fungi is not always related and host preference among EcMF can be substantial outside the temperate zone.
tree species delay greening their leaves until full expansion. This strategy is thought to provid... more tree species delay greening their leaves until full expansion. This strategy is thought to provide newly flushing leaves with protection against damage by herbivores by keeping young leaves devoid of nutritive value. Because young leaves suffer the greatest predation from invertebrate herbivores, delayed greening could prevent costly tissue loss. Many species that delay greening also produce anthocyanin pigments in their new leaves, giving them a reddish tint. These anthocyanins may be fungicidal, protect leaves against UV damage or make leaves cryptic to herbivores blind to the red part of the spectrum. † Methods A comprehensive survey was undertaken of seedlings, saplings and mature trees in two diverse tropical forests: a rain forest in western Amazonia (Yasuní National Park, Ecuador) and a deciduous forest in Central America (Barro Colorado Island, Panamá). A test was made of whether individuals and species with delayed greening or red-coloured young leaves showed lower mortality or higher relative growth rates than species that did not. † Key results At both Yasuní and Barro Colorado Island, species with delayed greening or red young leaves comprised significant proportions of the seedling and tree communities. At both sites, significantly lower mortality was found in seedlings and trees with delayed greening and red-coloured young leaves. While there was little effect of leaf colour on the production of new leaves of seedlings, diameter relative growth rates of small trees were lower in species with delayed greening and red-coloured young leaves than in species with regular green leaves, and this effect remained when the trade-off between mortality and growth was accounted for. † Conclusions Herbivores exert strong selection pressure on seedlings for the expression of defence traits. A delayed greening or red-coloured young leaf strategy in seedlings appears to be associated with higher survival for a given growth rate, and may thus influence the species composition of later life stages.
Biogeosciences Discussions, 2014
Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the globa... more Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha −1 ) at spatial scales ranging from 5 to 250 m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3 % for replicate 0.1 ha subplots within a single large plot, and 16.6 % for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change
by Perry Ong, Tomáš Vrška, Alberto Vicentini, Jonathan Myers, Keping Ma, Renato Valencia, Xiangcheng Mi, Lisa Korte, Sarayudh Bunyavejchewin, James Lutz, Shawn Lum, Keith Clay, Fangliang He, Jennifer Baltzer, S. Hubbell, and Alexandre A de Oliveira
Global Change Biology, 2014
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services inc... more Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25°S-61°N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the…