Ryoko Kuriyama - Academia.edu (original) (raw)
Papers by Ryoko Kuriyama
The mos protooncogene encodes a serine/threonine kinase and is a key regulator of oocyte meiotic ... more The mos protooncogene encodes a serine/threonine kinase and is a key regulator of oocyte meiotic maturation. After acute infedion of Swiss3T3 cells with virus containing the v-mos oncogene, cells expressing high levels of v-Mos round up and detach from the monolayer (floating cells), while cells that remain attached express 10-fold lower levels of v-Mos and are transformed. The floating cells
The Journal of Cell Biology
The quintessential feature of the dendritic microtubule array is its nonuniform pattern of polari... more The quintessential feature of the dendritic microtubule array is its nonuniform pattern of polarity orientation. During the development of the dendrite, a population of plus end-distal microtubules first appears, and these microtubules are subsequently joined by a population of oppositely oriented microtubules. Studies from our laboratory indicate that the latter microtubules are intercalated within the microtubule array by their specific transport from the cell body of the neuron during a critical stage in development (Sharp, D.J., W. Yu, and P.W. Baas. 1995. J. Cell Biol. 130:93-104). In addition, we have established that the mitotic motor protein termed CHO1/MKLP1 has the appropriate properties to transport microtubules in this manner (Sharp, D.J., R. Kuriyama, and P.W. Baas. 1996. J. Neurosci. 16:4370-4375). In the present study we have sought to determine whether CHO1/MKLP1 continues to be expressed in terminally postmitotic neurons and whether it is required for the establishment of the dendritic microtubule array. In situ hybridization analyses reveal that CHO1/MKLP1 is expressed in postmitotic cultured rat sympathetic and hippocampal neurons. Immunofluorescence analyses indicate that the motor is absent from axons but is enriched in developing dendrites, where it appears as discrete patches associated with the microtubule array. Treatment of the neurons with antisense oligonucleotides to CHO1/MKLP1 suppresses dendritic differentiation, presumably by inhibiting the establishment of their nonuniform microtubule polarity pattern. We conclude that CHO1/MKLP1 transports microtubules from the cell body into the developing dendrite with their minus ends leading, thereby establishing the nonuniform microtubule polarity pattern of the dendrite.
The Journal of clinical endocrinology and metabolism, Jan 22, 2015
Most epigenetic studies in diabetes compare normal cells in "high glucose" (HG) to cell... more Most epigenetic studies in diabetes compare normal cells in "high glucose" (HG) to cells in "normal glucose' (NG) and cells returned from HG to NG. Here we challenge this approach. To determine whether there were differences in gene expression in skin fibroblasts (SF) of monozygotic twins (MZT) discordant for type 1 diabetes (T1D). SF were grown in NG (5.5 mmol/L) and HG (25 mmol/L) for multiple passages. This study was conducted at the University of Minnesota. 9 MZT pairs discordant for T1D. Gene expression was assessed by mRNA-Seq, using the Illumina HiSeq 2000 instrument. Pathway analysis tested directionally consistent group differences within the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. 3308 genes were differentially expressed between NG and HG in T1D MZT versus 889 in non-T1D twins. DNA replication, proteasome, cell cycle, base excision repair, homologous recombination, pyrimidine metabolism, and spliceosome pathways had over represented gene...
The Journal of cell biology, Jan 25, 1997
The quintessential feature of the dendritic microtubule array is its nonuniform pattern of polari... more The quintessential feature of the dendritic microtubule array is its nonuniform pattern of polarity orientation. During the development of the dendrite, a population of plus end-distal microtubules first appears, and these microtubules are subsequently joined by a population of oppositely oriented microtubules. Studies from our laboratory indicate that the latter microtubules are intercalated within the microtubule array by their specific transport from the cell body of the neuron during a critical stage in development (Sharp, D.J., W. Yu, and P.W. Baas. 1995. J. Cell Biol. 130:93- 104). In addition, we have established that the mitotic motor protein termed CHO1/MKLP1 has the appropriate properties to transport microtubules in this manner (Sharp, D.J., R. Kuriyama, and P.W. Baas. 1996. J. Neurosci. 16:4370-4375). In the present study we have sought to determine whether CHO1/MKLP1 continues to be expressed in terminally postmitotic neurons and whether it is required for the establish...
Cell motility and the cytoskeleton, 1992
The molecular composition of two morphologically distinct microtubule-organizing centers (MTOCs) ... more The molecular composition of two morphologically distinct microtubule-organizing centers (MTOCs) was compared by probing with monoclonal antibodies raised against (i) nucleus-associated bodies (NABs) isolated in a complex with nuclei from the cellular slime mold Dictyostelium discoideum and (ii) mammalian mitotic spindles isolated from Chinese hamster ovary (CHO) cells. The staining patterns observed by immunofluorescence microscopy in whole CHO cells and Dictyostelium amoebae showed that the distribution of thirteen MTOC antigens is heterogeneous. Not all antibodies recognized the MTOC in both interphase and mitosis. Most of the anti-MTOC antibodies cross-reacted with other cellular organelles such as nuclei, Golgi apparatus-like aggregates and cytoskeletal elements. Two antibodies, CHO3 and AX3, recognized phosphorylated epitopes present in both mammalian centrosomes and Dictyostelium NABs. On immunoblots, most of the antibodies showed multiple bands, often of high molecular weigh...
The Journal of cell biology, Jan 13, 2014
Airway multiciliated epithelial cells play crucial roles in the mucosal defense system, but their... more Airway multiciliated epithelial cells play crucial roles in the mucosal defense system, but their differentiation process remains poorly understood. Mice lacking the basal body component Chibby (Cby) exhibit impaired mucociliary transport caused by defective ciliogenesis, resulting in chronic airway infection. In this paper, using primary cultures of mouse tracheal epithelial cells, we show that Cby facilitates basal body docking to the apical cell membrane through proper formation of ciliary vesicles at the distal appendage during the early stages of ciliogenesis. Cby is recruited to the distal appendages of centrioles via physical interaction with the distal appendage protein CEP164. Cby then associates with the membrane trafficking machinery component Rabin8, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rab8, to promote recruitment of Rab8 and efficient assembly of ciliary vesicles. Thus, our study identifies Cby as a key regulator of ciliary vesicl...
Cell motility and the cytoskeleton, 2005
Lecudina tuzetae is a parasitic protozoan (Gregarine, Apicomplexa) living in the intestine of a m... more Lecudina tuzetae is a parasitic protozoan (Gregarine, Apicomplexa) living in the intestine of a marine polychaete annelid, Nereis diversicolor. Using electron and fluorescence microscopy, we have characterized the dynamic changes in microtubule organization during the sexual phase of the life cycle. The gametocyst excreted from the host worm into seawater consists of two (one male and one female) gamonts in which cortical microtubule arrays are discernible. Each gamont undergoes multiple nuclear divisions without cytokinesis, resulting in the formation of large multinucleate haploid cells. After cellularization, approximately 1000 individual gametes are produced from each gamont within 24 h. Female gametes are spherical and contain interphase cytoplasmic microtubule arrays emanating from a gamma-tubulin-containing site. In male gametes, both interphase microtubules and a flagellum with "6 + 0" axonemal microtubules extend from the same microtubule-organizing site. At the b...
Cell motility and the cytoskeleton, 2004
Cep135 is a 135-kDa, coiled-coil centrosome protein important for microtubule organization in mam... more Cep135 is a 135-kDa, coiled-coil centrosome protein important for microtubule organization in mammalian cells [Ohta et al., 2002: J. Cell Biol. 156:87-99]. To identify Cep135-interacting molecules, we screened yeast two-hybrid libraries. One clone encoded dynamitin, a p50 dynactin subunit, which localized at the centrosome and has been shown to be involved in anchoring microtubules to centrosomes. The central domain of p50 binds to the C-terminal sequence of Cep135; this was further confirmed by immunoprecipitation and immunostaining of CHO cells co-expressing the binding domains for Cep135 and p50. Exogenous p50 lacking the Cep 135-binding domain failed to locate at the centrosome, suggesting that Cep135 is required for initial targeting of the centrosome. Altered levels of Cep135 and p50 by RNAi and protein overexpression caused the release of endogenous partner molecules from centrosomes. This also resulted in dislocation of other centrosomal molecules, such as gamma-tubulin and ...
The Journal of cell biology, 2003
A mitosis-specific Aurora-A kinase has been implicated in microtubule organization and spindle as... more A mitosis-specific Aurora-A kinase has been implicated in microtubule organization and spindle assembly in diverse organisms. However, exactly how Aurora-A controls the microtubule nucleation onto centrosomes is unknown. Here, we show that Aurora-A specifically binds to the COOH-terminal domain of a Drosophila centrosomal protein, centrosomin (CNN), which has been shown to be important for assembly of mitotic spindles and spindle poles. Aurora-A and CNN are mutually dependent for localization at spindle poles, which is required for proper targeting of gamma-tubulin and other centrosomal components to the centrosome. The NH2-terminal half of CNN interacts with gamma-tubulin, and induces cytoplasmic foci that can initiate microtubule nucleation in vivo and in vitro in both Drosophila and mammalian cells. These results suggest that Aurora-A regulates centrosome assembly by controlling the CNN's ability to targeting and/or anchoring gamma-tubulin to the centrosome and organizing mic...
The Journal of neuroscience : the official journal of the Society for Neuroscience, 2000
Dendrites are short stout tapering processes that are rich in ribosomes and Golgi elements, where... more Dendrites are short stout tapering processes that are rich in ribosomes and Golgi elements, whereas axons are long thin processes of uniform diameter that are deficient in these organelles. It has been hypothesized that the unique morphological and compositional features of axons and dendrites result from their distinct patterns of microtubule polarity orientation. The microtubules within axons are uniformly oriented with their plus ends distal to the cell body, whereas microtubules within dendrites are nonuniformly oriented. The minus-end-distal microtubules are thought to arise via their specific transport into dendrites by the motor protein known as CHO1/MKLP1. According to this model, CHO1/MKLP1 transports microtubules with their minus ends leading into dendrites by generating forces against the plus-end-distal microtubules, thus creating drag on the plus-end-distal microtubules. Here we show that depletion of CHO1/MKLP1 from cultured neurons causes a rapid redistribution of mic...
Journal of neurocytology, 1998
Neurons are terminally post-mitotic cells that utilize their microtubule arrays for the growth an... more Neurons are terminally post-mitotic cells that utilize their microtubule arrays for the growth and maintenance of axons and dendrites rather than for the formation of mitotic spindles. Recent studies from our laboratory suggest that the mechanisms that organize the axonal and dendritic microtubule arrays may be variations on the same mechanisms that organize the mitotic spindle in dividing cells. In particular, we have identified molecular motor proteins that serve analogous functions in the establishment of these seemingly very different microtubule arrays. In the present study, we have sought to determine whether a non-motor protein termed NuMA is also a component of both systems. NuMA is a approximately 230 kDa structural protein that is present exclusively in the nucleus during interphase. During mitosis, NuMA forms aggregates that interact with microtubules and certain motor proteins. As a result of these interactions, NuMA is thought to draw together the minus-ends of microtub...
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 15, 1996
The microtubules (MTs) within neuronal processes are highly organized with regard to their polari... more The microtubules (MTs) within neuronal processes are highly organized with regard to their polarity and yet are not attached to any detectable nucleating structure. Axonal MTs are uniformly oriented with their plus ends distal to the cell body, whereas dendritic MTs are of both orientations. Here, we sought to test the capacity of motor-driven MT transport to organize distinct MT patterns during process outgrowth. We focused on CHO1/MKLP1, a kinesin-related protein present in the midzonal region of the mitotic spindle where MTs of opposite orientation overlap. Insect ovarian Sf9 cells induced to express the N-terminal portion of the molecule form MT-rich processes with a morphology similar to that of neuronal dendrites (Kuriyama et al., 1994). Nascent processes contain uniformly plus-end-distal MTs, but these are joined by minus-end-distal MTs as the processes continue to develop. Thus, this CHO1/MKLP1 fragment establishes a nonuniform MT polarity pattern and does so by a similar se...
Molecular and cellular biology, 1995
PLK (STPK13) encodes a murine protein kinase closely related to those encoded by the Drosophila m... more PLK (STPK13) encodes a murine protein kinase closely related to those encoded by the Drosophila melanogaster polo gene and the Saccharomyces cerevisiae CDC5 gene, which are required for normal mitotic and meiotic divisions. Affinity-purified antibody generated against the C-terminal 13 amino acids of Plk specifically recognizes a single polypeptide of 66 kDa in MELC, NIH 3T3, and HeLa cellular extracts. The expression levels of both poly(A)+ PLK mRNA and its encoded protein are most abundant about 17 h after serum stimulation of NIH 3T3 cells. Plk protein begins to accumulate at the S/G2 boundary and reaches the maximum level at the G2/M boundary in continuously cycling cells. Concurrent with cyclin B-associated cdc2 kinase activity, Plk kinase activity sharply peaks at the onset of mitosis. Plk enzymatic activity gradually decreases as M phase proceeds but persists longer than cyclin B-associated cdc2 kinase activity. Plk is localized to the area surrounding the chromosomes in prom...
Monoclonal antibody (SU5), prepared from isolated mitotic spindles of sea urchin eggs, stained ce... more Monoclonal antibody (SU5), prepared from isolated mitotic spindles of sea urchin eggs, stained centrospheres preferentially and recognized a 50K (K = 10(3) Mr) polypeptide on immunoblots. Three positive clones were isolated by screening a lambda gt11 cDNA expression library prepared from sea urchin egg mRNA with SU5. One clone containing a 1.8-kb (1 kb = 10(3) base-pairs) insert was selected for further characterization. The beta-galactosidase fusion protein encoded by the cDNA clone had an apparent relative molecular mass of 150K, indicating that the inserted cDNA produced an estimated 34K of polypeptide. A single 2.2-kb RNA transcript was detected in sea urchin embryos using the cDNA clone as a probe. The cDNA fragment was sequenced and the nucleotide sequence was used to predict the amino acid sequence of the open reading frames in the clone. The putative gene product shows striking similarity to the peptide chain elongation factor (EF-1 alpha) from yeast, fungus, shrimp, insect, mouse and human.
Cell Motility and the Cytoskeleton, 1986
The relationship between centriole formation and DNA synthesis was investigated by examining the ... more The relationship between centriole formation and DNA synthesis was investigated by examining the effect of taxol on the centriole cycle and the initiation of DNA synthesis in synchronized cells. The centriole cycle was monitored by electron microscopy of whole-mount preparations [Kuriyama and Borisy, J. Cell Biol., 1981, 91 :8 14-8211. A short daughter centriole appeared in perpendicular orientation to each parent during late GI or early S and elongated slowly during S to G2. Addition of 5-20 pg/ml taxol to a synchronous population of cells in S phase did not inhibit centriole elongation; rather, elongation was accelerated. In contrast, when taxol was added to M phase or early G1 cells, centriole duplication was completely inhibited. The taxol block was reversible since nucleation and elongation of centrioles resumed as soon as the drug was removed. Cells exposed to taxol progressed through the cell cycle and became blocked in mitosis, as indicated by an increase in the mitotic index, but eventually the mitotic arrest was overcome, resulting in formation of multinucleated cells. A peak in mitotic index was seen in the following generation, indicating that chromosomes duplicated in the presence of taxol. Incorporation of 3H-thymidine followed by autoradiography confirmed that DNA synthesis was initiated in the presence of taxol even though formation of daughter centrioles was inhibited. It seems, therefore, that centriole duplication is not a prerequisite for entry into S phase. Since DNA synthesis has already been demonstrated not to be necessary for centriole duplication, these two events, normally coordinated in time, appear to be independent of each other. Parent centriole. It was observed by Tucker et a1 [Tucker, Pardee, and Fujiwara, 19791 that when quiescent 3T3
Journal of Cell Biology - J CELL BIOL, 1997
Microtubules in the axon are uniformly ori- ented, while microtubules in the dendrite are nonuni-... more Microtubules in the axon are uniformly ori- ented, while microtubules in the dendrite are nonuni- formly oriented. We have proposed that these distinct microtubule polarity patterns may arise from a redistri- bution of molecular motor proteins previously used for mitosis of the developing neuroblast. To address this is- sue, we performed studies on neuroblastoma cells that undergo mitosis but also generate short processes dur- ing interphase. Some of these processes are similar to axons with regard to their morphology and microtubule polarity pattern, while others are similar to dendrites. Treatment with cAMP or retinoic acid inhibits cell divi- sion, with the former promoting the development of the axon-like processes and the latter promoting the devel- opment of the dendrite-like processes. During mitosis, the kinesin-related motor termed CHO1/MKLP1 is lo- calized within the spindle midzone where it is thought to transport microtubules of opposite orientation rela- tive to one ano...
Zoological Science, 1998
gamma-Tubulin is an ubiquitous MTOC (microtubule-organizing center) component essential for the r... more gamma-Tubulin is an ubiquitous MTOC (microtubule-organizing center) component essential for the regulation of microtubule functions. A 1.8 kb cDNA coding for gamma-tubulin was isolated from CHO cells. Analysis of nucleotide sequence predicts a protein of 451 amino acids, which is over 97% identical to human and Xenopus gamma-tubulin. When CHO cells were transiently transfected with the gamma-tubulin clone, epitope-tagged full-length, as well as truncated polypeptides (amino acids 1-398 and 1-340), resulted in the formation of cytoplasmic foci of various sizes. Although one of the foci was identified as the centrosome, the rest of the dots were not associated with any other centrosomal components tested so far. The pattern of microtubule organization was not affected by induction of such gamma-tubulin-containing dots in transfected cells. In addition, the cytoplasmic foci were unable to serve as the site for microtubule regrowth in nocodazole-treated cells upon removal of the drug, suggesting that gamma-tubulin-containing foci were not involved in the activity for microtubule formation and organization. Using the monomeric form of Chlamydomonas gamma-tubulin purified from insect Sf9 cells (), interaction between gamma-tubulin and microtubules was further investigated by immunoelectron microscopy. Microtubules incubated with gamma-tubulin monomers in vitro were associated with more gold particles conjugated with gamma-tubulin than in controls where no exogenous gamma-tubulin was added. However, binding of gamma-tubulin to microtubules was not extensive and was easily lost during sample preparation. Although gamma-tubulin was detected at the minus end of microtubules several times more frequently than the plus end, the majority of gold particles were seen along the microtubule length. These results contradict the previous reports (; ), which might be ascribed to the difference in the level of protein expression in transfected cells.
Transplantation Proceedings, 1998
The Journal of Cell Biology, 1998
Podocytes are unique cells that are decisively involved in glomerular filtration. They are equipp... more Podocytes are unique cells that are decisively involved in glomerular filtration. They are equipped with a complex process system consisting of major processes and foot processes whose function is insufficiently understood (Mundel, P., and W. Kriz. 1995. Anat. Embryol. 192:385-397). The major processes of podocytes contain a microtubular cytoskeleton. Taking advantage of a recently established cell culture system for podocytes with preserved ability to form processes (Mundel, P., J. Reiser, A. Zúñiga Mejía Borja, H. Pavenstädt, G.R. Davidson, W. Kriz, and R. Zeller. 1997b. Exp. Cell Res. 36:248-258), we studied the functional significance of the microtubular system in major processes. The following data were obtained: (a) Microtubules (MTs) in podocytes show a nonuniform polarity as revealed by hook-decoration. (b) CHO1/ MKLP1, a kinesin-like motor protein, is associated with MTs in podocytes. (c) Treatment of differentiating podocytes with CHO1/MKLP1 antisense oligonucleotides abolished the formation of processes and the nonuniform polarity of MTs. (d) During the recovery from taxol treatment, taxol-stabilized (nocodazole- resistant) MT fragments were distributed in the cell periphery along newly assembled nocodazole-sensitive MTs. A similar distribution pattern of CHO1/MKLP1 was found under these circumstances, indicating its association with MTs. (e) In the recovery phase after complete depolymerization, MTs reassembled exclusively at centrosomes. Taken together, these findings lead to the conclusion that the nonuniform MT polarity in podocytes established by CHO1/MKLP1 is necessary for process formation.
The Journal of Cell Biology, 1981
In interphase Chinese hamster ovary (CHO) cells, the centrosome is attached to the nucleus very f... more In interphase Chinese hamster ovary (CHO) cells, the centrosome is attached to the nucleus very firmly. This nuclear-centrosome complex is isolated as a coherent structure by lysis and extraction of cells with Triton X-100 in a low ionic strength medium. Under these conditions, the ultrastructure of the centrioles attached to the nucleus can be discerned by electron microscopy of whole-mount preparations. The structural changes of the centrioles as a function of the cell cycle were monitored by this technique. Specifically, centriolar profiles were placed into six categories according to their orientation and the length ratio of daughter and parent centrioles. The proportion of centrioles in each category was plotted as a frequency histogram. The morphological changes in the centriole cycle were characterized by three distinguishable events: nucleation, elongation, and disorientation. The progress of centrioles through these stages was determined in synchronous populations of cells starting from S or M phase, in cells inhibited in DNA synthesis by addition of thymidine, and in cytoplasts. The results provide a quantitative description of the events of the centriole cycle. They also show that, in complete cells, nucleation, elongation, and disorientation are not dependent upon DNA synthesis. However, in cytoplasts, although elongation and disorientation occur as in normal cells, nucleation is blocked. Procentriole formation appeared to be inhibited by the removal of the nucleus. We suggest that coordination of centriole replication and nuclear replication may depend upon a signal arising from the nucleus.
The mos protooncogene encodes a serine/threonine kinase and is a key regulator of oocyte meiotic ... more The mos protooncogene encodes a serine/threonine kinase and is a key regulator of oocyte meiotic maturation. After acute infedion of Swiss3T3 cells with virus containing the v-mos oncogene, cells expressing high levels of v-Mos round up and detach from the monolayer (floating cells), while cells that remain attached express 10-fold lower levels of v-Mos and are transformed. The floating cells
The Journal of Cell Biology
The quintessential feature of the dendritic microtubule array is its nonuniform pattern of polari... more The quintessential feature of the dendritic microtubule array is its nonuniform pattern of polarity orientation. During the development of the dendrite, a population of plus end-distal microtubules first appears, and these microtubules are subsequently joined by a population of oppositely oriented microtubules. Studies from our laboratory indicate that the latter microtubules are intercalated within the microtubule array by their specific transport from the cell body of the neuron during a critical stage in development (Sharp, D.J., W. Yu, and P.W. Baas. 1995. J. Cell Biol. 130:93-104). In addition, we have established that the mitotic motor protein termed CHO1/MKLP1 has the appropriate properties to transport microtubules in this manner (Sharp, D.J., R. Kuriyama, and P.W. Baas. 1996. J. Neurosci. 16:4370-4375). In the present study we have sought to determine whether CHO1/MKLP1 continues to be expressed in terminally postmitotic neurons and whether it is required for the establishment of the dendritic microtubule array. In situ hybridization analyses reveal that CHO1/MKLP1 is expressed in postmitotic cultured rat sympathetic and hippocampal neurons. Immunofluorescence analyses indicate that the motor is absent from axons but is enriched in developing dendrites, where it appears as discrete patches associated with the microtubule array. Treatment of the neurons with antisense oligonucleotides to CHO1/MKLP1 suppresses dendritic differentiation, presumably by inhibiting the establishment of their nonuniform microtubule polarity pattern. We conclude that CHO1/MKLP1 transports microtubules from the cell body into the developing dendrite with their minus ends leading, thereby establishing the nonuniform microtubule polarity pattern of the dendrite.
The Journal of clinical endocrinology and metabolism, Jan 22, 2015
Most epigenetic studies in diabetes compare normal cells in "high glucose" (HG) to cell... more Most epigenetic studies in diabetes compare normal cells in "high glucose" (HG) to cells in "normal glucose' (NG) and cells returned from HG to NG. Here we challenge this approach. To determine whether there were differences in gene expression in skin fibroblasts (SF) of monozygotic twins (MZT) discordant for type 1 diabetes (T1D). SF were grown in NG (5.5 mmol/L) and HG (25 mmol/L) for multiple passages. This study was conducted at the University of Minnesota. 9 MZT pairs discordant for T1D. Gene expression was assessed by mRNA-Seq, using the Illumina HiSeq 2000 instrument. Pathway analysis tested directionally consistent group differences within the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. 3308 genes were differentially expressed between NG and HG in T1D MZT versus 889 in non-T1D twins. DNA replication, proteasome, cell cycle, base excision repair, homologous recombination, pyrimidine metabolism, and spliceosome pathways had over represented gene...
The Journal of cell biology, Jan 25, 1997
The quintessential feature of the dendritic microtubule array is its nonuniform pattern of polari... more The quintessential feature of the dendritic microtubule array is its nonuniform pattern of polarity orientation. During the development of the dendrite, a population of plus end-distal microtubules first appears, and these microtubules are subsequently joined by a population of oppositely oriented microtubules. Studies from our laboratory indicate that the latter microtubules are intercalated within the microtubule array by their specific transport from the cell body of the neuron during a critical stage in development (Sharp, D.J., W. Yu, and P.W. Baas. 1995. J. Cell Biol. 130:93- 104). In addition, we have established that the mitotic motor protein termed CHO1/MKLP1 has the appropriate properties to transport microtubules in this manner (Sharp, D.J., R. Kuriyama, and P.W. Baas. 1996. J. Neurosci. 16:4370-4375). In the present study we have sought to determine whether CHO1/MKLP1 continues to be expressed in terminally postmitotic neurons and whether it is required for the establish...
Cell motility and the cytoskeleton, 1992
The molecular composition of two morphologically distinct microtubule-organizing centers (MTOCs) ... more The molecular composition of two morphologically distinct microtubule-organizing centers (MTOCs) was compared by probing with monoclonal antibodies raised against (i) nucleus-associated bodies (NABs) isolated in a complex with nuclei from the cellular slime mold Dictyostelium discoideum and (ii) mammalian mitotic spindles isolated from Chinese hamster ovary (CHO) cells. The staining patterns observed by immunofluorescence microscopy in whole CHO cells and Dictyostelium amoebae showed that the distribution of thirteen MTOC antigens is heterogeneous. Not all antibodies recognized the MTOC in both interphase and mitosis. Most of the anti-MTOC antibodies cross-reacted with other cellular organelles such as nuclei, Golgi apparatus-like aggregates and cytoskeletal elements. Two antibodies, CHO3 and AX3, recognized phosphorylated epitopes present in both mammalian centrosomes and Dictyostelium NABs. On immunoblots, most of the antibodies showed multiple bands, often of high molecular weigh...
The Journal of cell biology, Jan 13, 2014
Airway multiciliated epithelial cells play crucial roles in the mucosal defense system, but their... more Airway multiciliated epithelial cells play crucial roles in the mucosal defense system, but their differentiation process remains poorly understood. Mice lacking the basal body component Chibby (Cby) exhibit impaired mucociliary transport caused by defective ciliogenesis, resulting in chronic airway infection. In this paper, using primary cultures of mouse tracheal epithelial cells, we show that Cby facilitates basal body docking to the apical cell membrane through proper formation of ciliary vesicles at the distal appendage during the early stages of ciliogenesis. Cby is recruited to the distal appendages of centrioles via physical interaction with the distal appendage protein CEP164. Cby then associates with the membrane trafficking machinery component Rabin8, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rab8, to promote recruitment of Rab8 and efficient assembly of ciliary vesicles. Thus, our study identifies Cby as a key regulator of ciliary vesicl...
Cell motility and the cytoskeleton, 2005
Lecudina tuzetae is a parasitic protozoan (Gregarine, Apicomplexa) living in the intestine of a m... more Lecudina tuzetae is a parasitic protozoan (Gregarine, Apicomplexa) living in the intestine of a marine polychaete annelid, Nereis diversicolor. Using electron and fluorescence microscopy, we have characterized the dynamic changes in microtubule organization during the sexual phase of the life cycle. The gametocyst excreted from the host worm into seawater consists of two (one male and one female) gamonts in which cortical microtubule arrays are discernible. Each gamont undergoes multiple nuclear divisions without cytokinesis, resulting in the formation of large multinucleate haploid cells. After cellularization, approximately 1000 individual gametes are produced from each gamont within 24 h. Female gametes are spherical and contain interphase cytoplasmic microtubule arrays emanating from a gamma-tubulin-containing site. In male gametes, both interphase microtubules and a flagellum with "6 + 0" axonemal microtubules extend from the same microtubule-organizing site. At the b...
Cell motility and the cytoskeleton, 2004
Cep135 is a 135-kDa, coiled-coil centrosome protein important for microtubule organization in mam... more Cep135 is a 135-kDa, coiled-coil centrosome protein important for microtubule organization in mammalian cells [Ohta et al., 2002: J. Cell Biol. 156:87-99]. To identify Cep135-interacting molecules, we screened yeast two-hybrid libraries. One clone encoded dynamitin, a p50 dynactin subunit, which localized at the centrosome and has been shown to be involved in anchoring microtubules to centrosomes. The central domain of p50 binds to the C-terminal sequence of Cep135; this was further confirmed by immunoprecipitation and immunostaining of CHO cells co-expressing the binding domains for Cep135 and p50. Exogenous p50 lacking the Cep 135-binding domain failed to locate at the centrosome, suggesting that Cep135 is required for initial targeting of the centrosome. Altered levels of Cep135 and p50 by RNAi and protein overexpression caused the release of endogenous partner molecules from centrosomes. This also resulted in dislocation of other centrosomal molecules, such as gamma-tubulin and ...
The Journal of cell biology, 2003
A mitosis-specific Aurora-A kinase has been implicated in microtubule organization and spindle as... more A mitosis-specific Aurora-A kinase has been implicated in microtubule organization and spindle assembly in diverse organisms. However, exactly how Aurora-A controls the microtubule nucleation onto centrosomes is unknown. Here, we show that Aurora-A specifically binds to the COOH-terminal domain of a Drosophila centrosomal protein, centrosomin (CNN), which has been shown to be important for assembly of mitotic spindles and spindle poles. Aurora-A and CNN are mutually dependent for localization at spindle poles, which is required for proper targeting of gamma-tubulin and other centrosomal components to the centrosome. The NH2-terminal half of CNN interacts with gamma-tubulin, and induces cytoplasmic foci that can initiate microtubule nucleation in vivo and in vitro in both Drosophila and mammalian cells. These results suggest that Aurora-A regulates centrosome assembly by controlling the CNN's ability to targeting and/or anchoring gamma-tubulin to the centrosome and organizing mic...
The Journal of neuroscience : the official journal of the Society for Neuroscience, 2000
Dendrites are short stout tapering processes that are rich in ribosomes and Golgi elements, where... more Dendrites are short stout tapering processes that are rich in ribosomes and Golgi elements, whereas axons are long thin processes of uniform diameter that are deficient in these organelles. It has been hypothesized that the unique morphological and compositional features of axons and dendrites result from their distinct patterns of microtubule polarity orientation. The microtubules within axons are uniformly oriented with their plus ends distal to the cell body, whereas microtubules within dendrites are nonuniformly oriented. The minus-end-distal microtubules are thought to arise via their specific transport into dendrites by the motor protein known as CHO1/MKLP1. According to this model, CHO1/MKLP1 transports microtubules with their minus ends leading into dendrites by generating forces against the plus-end-distal microtubules, thus creating drag on the plus-end-distal microtubules. Here we show that depletion of CHO1/MKLP1 from cultured neurons causes a rapid redistribution of mic...
Journal of neurocytology, 1998
Neurons are terminally post-mitotic cells that utilize their microtubule arrays for the growth an... more Neurons are terminally post-mitotic cells that utilize their microtubule arrays for the growth and maintenance of axons and dendrites rather than for the formation of mitotic spindles. Recent studies from our laboratory suggest that the mechanisms that organize the axonal and dendritic microtubule arrays may be variations on the same mechanisms that organize the mitotic spindle in dividing cells. In particular, we have identified molecular motor proteins that serve analogous functions in the establishment of these seemingly very different microtubule arrays. In the present study, we have sought to determine whether a non-motor protein termed NuMA is also a component of both systems. NuMA is a approximately 230 kDa structural protein that is present exclusively in the nucleus during interphase. During mitosis, NuMA forms aggregates that interact with microtubules and certain motor proteins. As a result of these interactions, NuMA is thought to draw together the minus-ends of microtub...
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 15, 1996
The microtubules (MTs) within neuronal processes are highly organized with regard to their polari... more The microtubules (MTs) within neuronal processes are highly organized with regard to their polarity and yet are not attached to any detectable nucleating structure. Axonal MTs are uniformly oriented with their plus ends distal to the cell body, whereas dendritic MTs are of both orientations. Here, we sought to test the capacity of motor-driven MT transport to organize distinct MT patterns during process outgrowth. We focused on CHO1/MKLP1, a kinesin-related protein present in the midzonal region of the mitotic spindle where MTs of opposite orientation overlap. Insect ovarian Sf9 cells induced to express the N-terminal portion of the molecule form MT-rich processes with a morphology similar to that of neuronal dendrites (Kuriyama et al., 1994). Nascent processes contain uniformly plus-end-distal MTs, but these are joined by minus-end-distal MTs as the processes continue to develop. Thus, this CHO1/MKLP1 fragment establishes a nonuniform MT polarity pattern and does so by a similar se...
Molecular and cellular biology, 1995
PLK (STPK13) encodes a murine protein kinase closely related to those encoded by the Drosophila m... more PLK (STPK13) encodes a murine protein kinase closely related to those encoded by the Drosophila melanogaster polo gene and the Saccharomyces cerevisiae CDC5 gene, which are required for normal mitotic and meiotic divisions. Affinity-purified antibody generated against the C-terminal 13 amino acids of Plk specifically recognizes a single polypeptide of 66 kDa in MELC, NIH 3T3, and HeLa cellular extracts. The expression levels of both poly(A)+ PLK mRNA and its encoded protein are most abundant about 17 h after serum stimulation of NIH 3T3 cells. Plk protein begins to accumulate at the S/G2 boundary and reaches the maximum level at the G2/M boundary in continuously cycling cells. Concurrent with cyclin B-associated cdc2 kinase activity, Plk kinase activity sharply peaks at the onset of mitosis. Plk enzymatic activity gradually decreases as M phase proceeds but persists longer than cyclin B-associated cdc2 kinase activity. Plk is localized to the area surrounding the chromosomes in prom...
Monoclonal antibody (SU5), prepared from isolated mitotic spindles of sea urchin eggs, stained ce... more Monoclonal antibody (SU5), prepared from isolated mitotic spindles of sea urchin eggs, stained centrospheres preferentially and recognized a 50K (K = 10(3) Mr) polypeptide on immunoblots. Three positive clones were isolated by screening a lambda gt11 cDNA expression library prepared from sea urchin egg mRNA with SU5. One clone containing a 1.8-kb (1 kb = 10(3) base-pairs) insert was selected for further characterization. The beta-galactosidase fusion protein encoded by the cDNA clone had an apparent relative molecular mass of 150K, indicating that the inserted cDNA produced an estimated 34K of polypeptide. A single 2.2-kb RNA transcript was detected in sea urchin embryos using the cDNA clone as a probe. The cDNA fragment was sequenced and the nucleotide sequence was used to predict the amino acid sequence of the open reading frames in the clone. The putative gene product shows striking similarity to the peptide chain elongation factor (EF-1 alpha) from yeast, fungus, shrimp, insect, mouse and human.
Cell Motility and the Cytoskeleton, 1986
The relationship between centriole formation and DNA synthesis was investigated by examining the ... more The relationship between centriole formation and DNA synthesis was investigated by examining the effect of taxol on the centriole cycle and the initiation of DNA synthesis in synchronized cells. The centriole cycle was monitored by electron microscopy of whole-mount preparations [Kuriyama and Borisy, J. Cell Biol., 1981, 91 :8 14-8211. A short daughter centriole appeared in perpendicular orientation to each parent during late GI or early S and elongated slowly during S to G2. Addition of 5-20 pg/ml taxol to a synchronous population of cells in S phase did not inhibit centriole elongation; rather, elongation was accelerated. In contrast, when taxol was added to M phase or early G1 cells, centriole duplication was completely inhibited. The taxol block was reversible since nucleation and elongation of centrioles resumed as soon as the drug was removed. Cells exposed to taxol progressed through the cell cycle and became blocked in mitosis, as indicated by an increase in the mitotic index, but eventually the mitotic arrest was overcome, resulting in formation of multinucleated cells. A peak in mitotic index was seen in the following generation, indicating that chromosomes duplicated in the presence of taxol. Incorporation of 3H-thymidine followed by autoradiography confirmed that DNA synthesis was initiated in the presence of taxol even though formation of daughter centrioles was inhibited. It seems, therefore, that centriole duplication is not a prerequisite for entry into S phase. Since DNA synthesis has already been demonstrated not to be necessary for centriole duplication, these two events, normally coordinated in time, appear to be independent of each other. Parent centriole. It was observed by Tucker et a1 [Tucker, Pardee, and Fujiwara, 19791 that when quiescent 3T3
Journal of Cell Biology - J CELL BIOL, 1997
Microtubules in the axon are uniformly ori- ented, while microtubules in the dendrite are nonuni-... more Microtubules in the axon are uniformly ori- ented, while microtubules in the dendrite are nonuni- formly oriented. We have proposed that these distinct microtubule polarity patterns may arise from a redistri- bution of molecular motor proteins previously used for mitosis of the developing neuroblast. To address this is- sue, we performed studies on neuroblastoma cells that undergo mitosis but also generate short processes dur- ing interphase. Some of these processes are similar to axons with regard to their morphology and microtubule polarity pattern, while others are similar to dendrites. Treatment with cAMP or retinoic acid inhibits cell divi- sion, with the former promoting the development of the axon-like processes and the latter promoting the devel- opment of the dendrite-like processes. During mitosis, the kinesin-related motor termed CHO1/MKLP1 is lo- calized within the spindle midzone where it is thought to transport microtubules of opposite orientation rela- tive to one ano...
Zoological Science, 1998
gamma-Tubulin is an ubiquitous MTOC (microtubule-organizing center) component essential for the r... more gamma-Tubulin is an ubiquitous MTOC (microtubule-organizing center) component essential for the regulation of microtubule functions. A 1.8 kb cDNA coding for gamma-tubulin was isolated from CHO cells. Analysis of nucleotide sequence predicts a protein of 451 amino acids, which is over 97% identical to human and Xenopus gamma-tubulin. When CHO cells were transiently transfected with the gamma-tubulin clone, epitope-tagged full-length, as well as truncated polypeptides (amino acids 1-398 and 1-340), resulted in the formation of cytoplasmic foci of various sizes. Although one of the foci was identified as the centrosome, the rest of the dots were not associated with any other centrosomal components tested so far. The pattern of microtubule organization was not affected by induction of such gamma-tubulin-containing dots in transfected cells. In addition, the cytoplasmic foci were unable to serve as the site for microtubule regrowth in nocodazole-treated cells upon removal of the drug, suggesting that gamma-tubulin-containing foci were not involved in the activity for microtubule formation and organization. Using the monomeric form of Chlamydomonas gamma-tubulin purified from insect Sf9 cells (), interaction between gamma-tubulin and microtubules was further investigated by immunoelectron microscopy. Microtubules incubated with gamma-tubulin monomers in vitro were associated with more gold particles conjugated with gamma-tubulin than in controls where no exogenous gamma-tubulin was added. However, binding of gamma-tubulin to microtubules was not extensive and was easily lost during sample preparation. Although gamma-tubulin was detected at the minus end of microtubules several times more frequently than the plus end, the majority of gold particles were seen along the microtubule length. These results contradict the previous reports (; ), which might be ascribed to the difference in the level of protein expression in transfected cells.
Transplantation Proceedings, 1998
The Journal of Cell Biology, 1998
Podocytes are unique cells that are decisively involved in glomerular filtration. They are equipp... more Podocytes are unique cells that are decisively involved in glomerular filtration. They are equipped with a complex process system consisting of major processes and foot processes whose function is insufficiently understood (Mundel, P., and W. Kriz. 1995. Anat. Embryol. 192:385-397). The major processes of podocytes contain a microtubular cytoskeleton. Taking advantage of a recently established cell culture system for podocytes with preserved ability to form processes (Mundel, P., J. Reiser, A. Zúñiga Mejía Borja, H. Pavenstädt, G.R. Davidson, W. Kriz, and R. Zeller. 1997b. Exp. Cell Res. 36:248-258), we studied the functional significance of the microtubular system in major processes. The following data were obtained: (a) Microtubules (MTs) in podocytes show a nonuniform polarity as revealed by hook-decoration. (b) CHO1/ MKLP1, a kinesin-like motor protein, is associated with MTs in podocytes. (c) Treatment of differentiating podocytes with CHO1/MKLP1 antisense oligonucleotides abolished the formation of processes and the nonuniform polarity of MTs. (d) During the recovery from taxol treatment, taxol-stabilized (nocodazole- resistant) MT fragments were distributed in the cell periphery along newly assembled nocodazole-sensitive MTs. A similar distribution pattern of CHO1/MKLP1 was found under these circumstances, indicating its association with MTs. (e) In the recovery phase after complete depolymerization, MTs reassembled exclusively at centrosomes. Taken together, these findings lead to the conclusion that the nonuniform MT polarity in podocytes established by CHO1/MKLP1 is necessary for process formation.
The Journal of Cell Biology, 1981
In interphase Chinese hamster ovary (CHO) cells, the centrosome is attached to the nucleus very f... more In interphase Chinese hamster ovary (CHO) cells, the centrosome is attached to the nucleus very firmly. This nuclear-centrosome complex is isolated as a coherent structure by lysis and extraction of cells with Triton X-100 in a low ionic strength medium. Under these conditions, the ultrastructure of the centrioles attached to the nucleus can be discerned by electron microscopy of whole-mount preparations. The structural changes of the centrioles as a function of the cell cycle were monitored by this technique. Specifically, centriolar profiles were placed into six categories according to their orientation and the length ratio of daughter and parent centrioles. The proportion of centrioles in each category was plotted as a frequency histogram. The morphological changes in the centriole cycle were characterized by three distinguishable events: nucleation, elongation, and disorientation. The progress of centrioles through these stages was determined in synchronous populations of cells starting from S or M phase, in cells inhibited in DNA synthesis by addition of thymidine, and in cytoplasts. The results provide a quantitative description of the events of the centriole cycle. They also show that, in complete cells, nucleation, elongation, and disorientation are not dependent upon DNA synthesis. However, in cytoplasts, although elongation and disorientation occur as in normal cells, nucleation is blocked. Procentriole formation appeared to be inhibited by the removal of the nucleus. We suggest that coordination of centriole replication and nuclear replication may depend upon a signal arising from the nucleus.