Sabrina Plante - Academia.edu (original) (raw)

Uploads

Papers by Sabrina Plante

Research paper thumbnail of Temporal dynamics in the foraging decisions of large herbivores

Animal Production Science, 2015

The foraging decisions involved in acquiring a meal can have an impact on an animal's spatial dis... more The foraging decisions involved in acquiring a meal can have an impact on an animal's spatial distribution, as well as affect other animal species and plant communities. Thus, understanding how the foraging process varies over space and time has broad ecological implications, and optimal foraging theory can be used to identify key factors controlling foraging decisions. Optimality models are based on currencies, options and constraints. Using examples from research on free-ranging bison (Bison bison), we show how variations in these model elements can yield strong spatio-temporal variation in expected foraging decisions. First, we present a simple optimal foraging model to investigate the temporal scale of foraging decisions. On the basis of this model, we identify the foraging currency and demonstrate that such a simple model can be successful at predicting animal distribution across ecosystems. We then modify the model by changing (1) the forager's option, from the selection of individual plants to the selection of food bites that may include more than one plant species, (2) its constraints, from being omniscient to having incomplete information of resource quality and distribution and (3) its currency, from the maximisation of energy intake rate (E) to the maximisation of the ratio between E and mortality risk (u).We also show that, where the maximisation of E fails, the maximisation of E/u can explain the circadian rhythm in the diet and movements of bison. Simple optimal foraging-theory models thus can explain changes in dietary choice of bison within a foraging patch and during the course of a day.

Research paper thumbnail of Shrub cover in northern Nunavik: can herbivores limit shrub expansion?

Polar Biology, 2014

Recent climate changes have increased the primary productivity of many Arctic and subarctic regio... more Recent climate changes have increased the primary productivity of many Arctic and subarctic regions. Erected shrub has been shown to increase in abundance over the last decades in northern regions in response to warmer climate. At the same time, caribou herds are declining throughout the circumboreal regions. Based on observation of heavy browsing on shrubs at Deception Bay (Nunavik, Canada), we hypothesized that the densification of shrubs observed in nearby locations did not occur at our study site despite of observed warming because of a recent peak of the Rivière-aux-Feuilles caribou herd. To assess shrub cover changes, we compared a 1972 mosaic of aerial photos to a 2010 satellite image over a 5 km 2 area, divided into 56 grids of 100 30 m 9 30 m cells. Most cells (n = 4,502) did not show any changes in the cover of shrubs but those who did were as likely to increase as to decrease. The relative cover of shrubs in cells who changed was not higher in 2010 (6.1 ± 0.2 %) than in 1972 (7.3 ± 0.4 %). More than 70 % of birch and willow had more than 50 % of their shoot browsed, suggesting that caribou may limit shrub expansion at this site. We cannot rule out that abiotic factors also contribute to the inertia in shrub cover. Increases in shrub abundance reported in Nunavik and elsewhere were located closer to the tree line or in discontinuous permafrost, whereas our site is characterized by herbaceous arctic tundra, continuous permafrost and relatively low annual precipitation.

Research paper thumbnail of Temporal dynamics in the foraging decisions of large herbivores

Animal Production Science, 2015

The foraging decisions involved in acquiring a meal can have an impact on an animal's spatial dis... more The foraging decisions involved in acquiring a meal can have an impact on an animal's spatial distribution, as well as affect other animal species and plant communities. Thus, understanding how the foraging process varies over space and time has broad ecological implications, and optimal foraging theory can be used to identify key factors controlling foraging decisions. Optimality models are based on currencies, options and constraints. Using examples from research on free-ranging bison (Bison bison), we show how variations in these model elements can yield strong spatio-temporal variation in expected foraging decisions. First, we present a simple optimal foraging model to investigate the temporal scale of foraging decisions. On the basis of this model, we identify the foraging currency and demonstrate that such a simple model can be successful at predicting animal distribution across ecosystems. We then modify the model by changing (1) the forager's option, from the selection of individual plants to the selection of food bites that may include more than one plant species, (2) its constraints, from being omniscient to having incomplete information of resource quality and distribution and (3) its currency, from the maximisation of energy intake rate (E) to the maximisation of the ratio between E and mortality risk (u).We also show that, where the maximisation of E fails, the maximisation of E/u can explain the circadian rhythm in the diet and movements of bison. Simple optimal foraging-theory models thus can explain changes in dietary choice of bison within a foraging patch and during the course of a day.

Research paper thumbnail of Shrub cover in northern Nunavik: can herbivores limit shrub expansion?

Polar Biology, 2014

Recent climate changes have increased the primary productivity of many Arctic and subarctic regio... more Recent climate changes have increased the primary productivity of many Arctic and subarctic regions. Erected shrub has been shown to increase in abundance over the last decades in northern regions in response to warmer climate. At the same time, caribou herds are declining throughout the circumboreal regions. Based on observation of heavy browsing on shrubs at Deception Bay (Nunavik, Canada), we hypothesized that the densification of shrubs observed in nearby locations did not occur at our study site despite of observed warming because of a recent peak of the Rivière-aux-Feuilles caribou herd. To assess shrub cover changes, we compared a 1972 mosaic of aerial photos to a 2010 satellite image over a 5 km 2 area, divided into 56 grids of 100 30 m 9 30 m cells. Most cells (n = 4,502) did not show any changes in the cover of shrubs but those who did were as likely to increase as to decrease. The relative cover of shrubs in cells who changed was not higher in 2010 (6.1 ± 0.2 %) than in 1972 (7.3 ± 0.4 %). More than 70 % of birch and willow had more than 50 % of their shoot browsed, suggesting that caribou may limit shrub expansion at this site. We cannot rule out that abiotic factors also contribute to the inertia in shrub cover. Increases in shrub abundance reported in Nunavik and elsewhere were located closer to the tree line or in discontinuous permafrost, whereas our site is characterized by herbaceous arctic tundra, continuous permafrost and relatively low annual precipitation.

Log In