Tianzhang Ye - Academia.edu (original) (raw)

Papers by Tianzhang Ye

Research paper thumbnail of Cloning of PBDX, an MIC2-related gene that spans the pseudoautosomal boundary on chromosome Xp

Research paper thumbnail of DEGS2 polymorphism associated with cognition in schizophrenia is associated with gene expression in brain

Translational psychiatry, 2015

A genome-wide association study of cognitive deficits in patients with schizophrenia in Japan fou... more A genome-wide association study of cognitive deficits in patients with schizophrenia in Japan found association with a missense genetic variant (rs7157599, Asn8Ser) in the delta(4)-desaturase, sphingolipid 2 (DEGS2) gene. A replication analysis using Caucasian samples showed a directionally consistent trend for cognitive association of a proxy single-nucleotide polymorphism (SNP), rs3783332. Although the DEGS2 gene is expressed in human brain, it is unknown how DEGS2 expression varies during human life and whether it is affected by psychiatric disorders and genetic variants. To address these questions, we examined DEGS2 messenger RNA using next-generation sequencing in postmortem dorsolateral prefrontal cortical tissue from a total of 418 Caucasian samples including patients with schizophrenia, bipolar disorder and major depressive disorder. DEGS2 is expressed at very low levels prenatally and increases gradually from birth to adolescence and consistently expressed across adulthood....

Research paper thumbnail of Contrasting changes in DRD1 and DRD2 splice variant expression in schizophrenia and affective disorders, and associations with SNPs in postmortem brain

Molecular Psychiatry, 2013

Dopamine 2 receptor (DRD2) is of major interest to the pathophysiology of schizophrenia (SCZ) bot... more Dopamine 2 receptor (DRD2) is of major interest to the pathophysiology of schizophrenia (SCZ) both as a target for antipsychotic drug action as well as a SCZ-associated risk gene. The dopamine 1 receptor (DRD1) is thought to mediate some of the cognitive deficits in SCZ, including impairment of working memory that relies on normal dorsolateral prefrontal cortex (DLPFC) function. To better understand the association of dopamine receptors with SCZ, we studied the expression of three DRD2 splice variants and the DRD1 transcript in DLPFC, hippocampus and caudate nucleus in a large cohort of subjects (~700), including patients with SCZ, affective disorders and nonpsychiatric controls (from 14th gestational week to 85 years of age), and examined genotype-expression associations of 278 single-nucleotide polymorphisms (SNPs) located in or near DRD2 and DRD1 genes. Expression of D2S mRNA and D2S/D2-long (D2L) ratio were significantly increased in DLPFC of patients with SCZ relative to controls (P<0.0001 and P<0.0001, respectively), whereas D2L, D2Longer and DRD1 were decreased (P<0.0001). Patients with affective disorders showed an opposite pattern: reduced expression of D2S (major depressive disorder, P<0.0001) and increased expression of D2L and DRD1 (bipolar disorder, P<0.0001). Moreover, SCZ-associated risk alleles at rs1079727, rs1076560 and rs2283265 predicted increased D2S/D2L expression ratio (P<0.05) in control individuals. Our data suggest that altered splicing of DRD2 and expression of DRD1 may constitute a pathophysiological mechanism in risk for SCZ and affective disorders. The association between SCZ risk-associated polymorphism and the ratio of D2S/D2L is consistent with this possibility.

Research paper thumbnail of Analysis of Copy Number Variations in Brain DNA from Patients with Schizophrenia and Other Psychiatric Disorders

Biological Psychiatry, 2012

Background-Clinical studies have identified several regions of the genome with copy number variat... more Background-Clinical studies have identified several regions of the genome with copy number variations (CNVs) associated with diverse neurodevelopmental behavioral disorders. Methods-We analyzed 1M SNP genotype arrays (Illumina BeadArrays) for evidence of previously reported recurrent CNVs and enriched genome wide CNV burden in DNA from 600 brains, including 441 individuals with various psychiatric diagnoses. We explored gene expression in the dorsolateral prefrontal cortex in selected cases with CNVs and in other subjects using Illumina BeadArrays (568 subjects in total), and additionally in 66-92 subjects using quantitative real-time PCR. Results-CNVs in previously reported genomic regions were identified in 4/193 patients with the diagnosis of schizophrenia (1q21.1, 11q25, 15q11.2, 22q11), 4/238 patients with mood disorders (11q25, 15q11.2, 22q11), and 1/10 patients with autism (2p16.3). No evidence of increased genome wide CNV burden was observed in cases with schizophrenia or mood disorders although the study is underpowered to observe rare events. mRNA expression patterns suggested incomplete molecular penetrance of observed CNVs. Conclusions-Our data confirm in brain DNA the presence of certain recurrent CNVs in a small percentage of patients with psychiatric diagnoses.

Research paper thumbnail of Evidence of Sex-Modulated Association of ZNF804A with Schizophrenia

Biological Psychiatry, 2011

The single nucleotide polymorphism (SNP) rs1344706 in ZNF804A (2q32.1) has been associated with s... more The single nucleotide polymorphism (SNP) rs1344706 in ZNF804A (2q32.1) has been associated with schizophrenia in a genome-wide association study (GWAS). A recent candidate gene study, which replicated the positive association with rs1344706, identified another positive SNP (rs7597593) in ZNF804A associated with schizophrenia. We performed an association study of rs7597593 in four GWAS cohorts of European ancestry. Postmortem human brain expression data of normal Caucasian individuals (n = 89) was also analyzed for examining the effect of rs7597593 on ZNF804A messenger RNA expression, using logistic regression and linear regression. We found that rs7597593 was significantly associated with schizophrenia in the combined GWAS datasets (n = 5023, odds ratio [OR](combined) = 1.15, p = .0011). Analysis of stratification by sex showed that the association was driven by the female subjects (OR = 1.29, p = .0002) and was not significant in male subjects (OR = 1.08, p = .148) in the combined sample of four cohorts. A sex by genotype interaction was near significant in both the Genetic Association Information Network sample (p = .0532) and the combined sample of four cohorts (p(combined) = .0531). Gene expression analysis showed no main effects but a significant female-specific association (p(female) = .047, p(male) = .335) and sex by genotype interaction (p = .0166) for rs7597593. Our data suggest a clinical and molecular modulation by sex of the association of ZNF804A SNP rs7597593 and risk of schizophrenia.

Research paper thumbnail of Characterization of STIP, a multi-domain nuclear protein, highly conserved in metazoans, and essential for embryogenesis in Caenorhabditis elegans

Experimental Cell Research, 2007

We report here the identification and characterization of STIP, a multi-domain nuclear protein th... more We report here the identification and characterization of STIP, a multi-domain nuclear protein that contains a G-patch, a coiled-coil, and several short tryptophan-tryptophan repeats highly conserved in metazoan species. To analyze their functional role in vivo, we cloned nematode stip-1 genes and determined the spatiotemporal pattern of Caenorhabditis elegans STIP-1 protein. RNA analyses and Western blots revealed that stip-1 mRNA was produced via trans-splicing and translated as a 95-kDa protein. Using reporter constructs, we found STIP-1 to be expressed at all developmental stages and in many tissue/cell types including worm oocyte nuclei. We found that STIP-1 is targeted to the nucleus and forms large polymers with a rod-like shape when expressed in mammalian cells. Using deletion mutants, we mapped the regions of STIP-1 involved in nuclear import and polymer assembly. We further showed that knockdown of C. elegans stip-1 by RNA interference arrested development and resulted in morphologic abnormalities around the 16-cell stage followed by 100% lethality, suggesting its essential role in worm embryogenesis. Importantly, the embryonic lethal phenotype could be faithfully rescued with Drosophila and human genes via transgenic expression. Our data provide the first direct evidence that STIP have a conserved essential nuclear function across metazoans from worms to humans.

Research paper thumbnail of Temporal dynamics and genetic control of transcription in the human prefrontal cortex

Research paper thumbnail of DNA methylation changes in the postmortem dorsolateral prefrontal cortex of patients with schizophrenia

Frontiers in genetics, 2014

Schizophrenia is a complex psychiatric disorder with a lifetime morbidity rate of 0.5-1.0%. The p... more Schizophrenia is a complex psychiatric disorder with a lifetime morbidity rate of 0.5-1.0%. The pathophysiology of schizophrenia still remains obscure. Accumulating evidence indicates that DNA methylation, which is the addition of a methyl group to the cytosine in a CpG dinucleotide, might play an important role in the pathogenesis of schizophrenia. To gain further insight into the molecular mechanisms underlying schizophrenia, a genome-wide DNA methylation profiling (27,578 CpG dinucleotides spanning 14,495 genes) of the human dorsolateral prefrontal cortex (DLPFC) was conducted in a large cohort (n = 216) of well characterized specimens from individuals with schizophrenia and non-psychiatric controls, combined with an analysis of genetic variance at ~880,000 SNPs. Aberrant DNA methylation in schizophrenia was identified at 107 CpG sites at 5% Bonferroni correction (p < 1.99 × 10(-6)). Of these significantly altered sites, hyper-DNA methylation was observed at 79 sites (73.8%), ...

Research paper thumbnail of Characteristics of the Cation Cotransporter NKCC1 in Human Brain: Alternate Transcripts, Expression in Development, and Potential Relationships to Brain Function and Schizophrenia

The Journal of Neuroscience, 2014

Early in development, GABA, an inhibitory neurotransmitter in adults, is excitatory. NKCC1 (SLC12... more Early in development, GABA, an inhibitory neurotransmitter in adults, is excitatory. NKCC1 (SLC12A2) encodes one of two cation chloride cotransporters mediating the conversion of GABA from excitatory to inhibitory. Using 3′ and 5′ RACE and PCR, we verified previously characterized alternative transcripts of NKCC1a (1–27) and NKCC1b (1–27(Δ21)), identified new NKCC1 transcripts, and explored their expression patterns during human prefrontal cortical development. A novel ultra-short transcript (1–2a) was expressed preferentially in the fetus. Expression of NKCC1b and 1–2a were decreased in schizophrenia compared with controls (NKCC1b: 0.8-fold decrease,p= 0.013; 1–2a: 0.8-fold decrease,p= 0.006). Furthermore, the expression of NKCC1b was associated with NKCC1 polymorphism rs3087889. The minor allele at rs3087889, associated with reduced NKCC1b expression (homozygous for major allele:N= 37; homozygous for minor allele:N= 15; 1.5-fold decrease;p< 0.01), was also associated with a mod...

Research paper thumbnail of Assessment of genetic risk for distribution of total interstitial white matter neurons in dorsolateral prefrontal cortex: role in schizophrenia

Schizophrenia research, Oct 27, 2016

Research paper thumbnail of Transcript-Specific Associations of SLC12A5 (KCC2) in Human Prefrontal Cortex with Development, Schizophrenia, and Affective Disorders

The Journal of Neuroscience, 2012

The neuron-specific K+-Cl−cotransporter SLC12A5, also known as KCC2, helps mediate the electrophy... more The neuron-specific K+-Cl−cotransporter SLC12A5, also known as KCC2, helps mediate the electrophysiological effects of GABA. The pattern of KCC2 expression during early brain development suggests that its upregulation drives the postsynaptic switch of GABA from excitation to inhibition. We previously found decreased expression of full-length KCC2 in the postmortem hippocampus of patients with schizophrenia, but not in the dorsolateral prefrontal cortex (DLPFC). Using PCR and rapid amplification of cDNA ends, we discovered several previously unrecognized alternative KCC2 transcripts in both human adult and fetal brain in addition to the previously identified full-length (NM_020708.3) and truncated (AK098371) transcripts. We measured the expression levels of four relatively abundant truncated splice variants, including three novel transcripts (ΔEXON6, EXON2B, and EXON6B) and one previously described transcript (AK098371), in a large human cohort of nonpsychiatric controls across the l...

Research paper thumbnail of Revisiting DARPP-32 in postmortem human brain: changes in schizophrenia and bipolar disorder and genetic associations with t-DARPP-32 expression

Molecular Psychiatry, 2013

Dopamine-and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32 or PPP1R1B) has b... more Dopamine-and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32 or PPP1R1B) has been of interest in schizophrenia owing to its critical function in integrating dopaminergic and glutaminergic signaling. In a previous study, we identified single-nucleotide polymorphisms (SNPs) and a frequent haplotype associated with cognitive and imaging phenotypes that have been linked with schizophrenia, as well as with expression of prefrontal cortical DARPP-32 messenger RNA (mRNA) in a relatively small sample of postmortem brains. In this study, we examined the association of expression of two major DARPP-32 transcripts, full-length (FL-DARPP-32) and truncated (t-DARPP-32), with genetic variants of DARPP-32 in three brain regions receiving dopaminergic input and implicated in schizophrenia (the dorsolateral prefrontal cortex (DLPFC), hippocampus and caudate) in a much larger set of postmortem samples from patients with schizophrenia, bipolar disorder, major depression and normal controls (4700 subjects). We found that the expression of t-DARPP-32 was increased in the DLPFC of patients with schizophrenia and bipolar disorder, and was strongly associated with genotypes at SNPs (rs879606, rs90974 and rs3764352), as well as the previously identified 7-SNP haplotype related to cognitive functioning. The genetic variants that predicted worse cognitive performance were associated with higher t-DARPP-32 expression. Our results suggest that variation in PPP1R1B affects the abundance of the splice variant t-DARPP-32 mRNA and may reflect potential molecular mechanisms implicated in schizophrenia and affective disorders.

Research paper thumbnail of CHRNA7 and CHRFAM7A mRNAs: Co-Localized and Their Expression Levels Altered in the Postmortem Dorsolateral Prefrontal Cortex in Major Psychiatric Disorders

The American journal of psychiatry, Jan 24, 2015

CHRNA7, coding α-7 nicotinic acetylcholine receptor (α7 nAChR), is involved in cognition through ... more CHRNA7, coding α-7 nicotinic acetylcholine receptor (α7 nAChR), is involved in cognition through interneuron modulation of dopamine and glutamate signaling. CHRNA7 and its partially duplicated chimeric gene CHRFAM7A have been implicated in schizophrenia through linkage and association studies. Expression of CHRNA7 and CHRFAM7A mRNA was measured in the postmortem prefrontal cortex in more than 700 subjects, including patients with schizophrenia, bipolar disorder, major depression, and normal comparison subjects. The effects of antipsychotics and nicotine, as well as associations of CHRNA7 SNPs with gene expression, were explored. Fluorescent in-situ hybridization was used to examine coexpression of both transcripts in the human cortex. CHRFAM7A expression and CHRFAM7A/CHRNA7 ratios were higher in fetal compared with postnatal life, whereas CHRNA7 expression was relatively stable. CHRFAM7A expression was significantly elevated in all diagnostic groups, while CHRNA7 expression was redu...

Research paper thumbnail of GAD2 Alternative Transcripts in the Human Prefrontal Cortex, and in Schizophrenia and Affective Disorders

PloS one, 2016

Genetic variation and early adverse environmental events work together to increase risk for schiz... more Genetic variation and early adverse environmental events work together to increase risk for schizophrenia. γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in adult mammalian brain, plays a major role in normal brain development, and has been strongly implicated in the pathobiology of schizophrenia. GABA synthesis is controlled by two glutamic acid decarboxylase (GAD) genes, GAD1 and GAD2, both of which produce a number of alternative transcripts. Genetic variants in the GAD1 gene are associated with increased risk for schizophrenia, and reduced expression of its major transcript in the human dorsolateral prefrontal cortex (DLPFC). No consistent changes in GAD2 expression have been found in brains from patients with schizophrenia. In this work, with the use of RNA sequencing and PCR technologies, we confirmed and tracked the expression of an alternative truncated transcript of GAD2 (ENST00000428517) in human control DLPFC homogenates across lifespan besides the well...

Research paper thumbnail of DNA Methylation Signatures in Development and Aging of the Human Prefrontal Cortex

The American Journal of Human Genetics, 2012

The human prefrontal cortex (PFC), a mastermind of the brain, is one of the last brain regions to... more The human prefrontal cortex (PFC), a mastermind of the brain, is one of the last brain regions to mature. To investigate the role of epigenetics in the development of PFC, we examined DNA methylation in~14,500 genes at~27,000 CpG loci focused on 5 0 promoter regions in 108 subjects range in age from fetal to elderly. DNA methylation in the PFC shows unique temporal patterns across life. The fastest changes occur during the prenatal period, slow down markedly after birth and continue to slow further with aging. At the genome level, the transition from fetal to postnatal life is typified by a reversal of direction, from demethylation prenatally to increased methylation postnatally. DNA methylation is strongly associated with genotypic variants and correlates with expression of a subset of genes, including genes involved in brain development and in de novo DNA methylation. Our results indicate that promoter DNA methylation in the human PFC is a highly dynamic process modified by genetic variance and regulating gene transcription. Additional discovery is made possible with a stand-alone application, BrainCloudMethyl.

Research paper thumbnail of DNA Methylation Signatures in Development and Aging of the Human Prefrontal Cortex

The American Journal of Human Genetics, 2012

Research paper thumbnail of Expression of GABA Signaling Molecules KCC2, NKCC1, and GAD1 in Cortical Development and Schizophrenia

Journal of Neuroscience, 2011

GABA signaling molecules are critical for both human brain development and the pathophysiology of... more GABA signaling molecules are critical for both human brain development and the pathophysiology of schizophrenia. We examined the expression of transcripts derived from three genes related to GABA signaling [GAD1 (GAD67 and GAD25), SLC12A2 (NKCC1), and SLC12A5 (KCC2)] in the prefrontal cortex (PFC) and hippocampal formation of a large cohort of nonpsychiatric control human brains (n ϭ 240) across the lifespan (from fetal week 14 to 80 years) and in patients with schizophrenia (n ϭ 30-31), using quantitative RT-PCR. We also examined whether a schizophrenia risk-associated promoter SNP in GAD1 (rs3749034) is related to expression of these transcripts. Our studies revealed that development and maturation of both the PFC and hippocampal formation are characterized by progressive switches in expression from GAD25 to GAD67 and from NKCC1 to KCC2. Previous studies have demonstrated that the former leads to GABA synthesis, and the latter leads to switching from excitatory to inhibitory neurotransmission. In the hippocampal formation, GAD25/GAD67 and NKCC1/KCC2 ratios are increased in patients with schizophrenia, reflecting a potentially immature GABA physiology. Remarkably, GAD25/GAD67 and NKCC1/KCC2 expression ratios are associated with rs3749034 genotype, with risk alleles again predicting a relatively less mature pattern. These findings suggest that abnormalities in GABA signaling critical to brain development contribute to genetic risk for schizophrenia.

Research paper thumbnail of Purification of Overexpressed Hexahistidine-Tagged BLM N431 as Oligomeric Complexes

Protein Expression and Purification, 1999

BLM is a DNA helicase encoded by a gene which is mutated in persons with Bloom's syndrome. The pr... more BLM is a DNA helicase encoded by a gene which is mutated in persons with Bloom's syndrome. The protein is a member of the RecQ subfamily of helicases and contains a central domain constituted by the seven motifs conserved in all helicases. In contrast, the N-terminal portion of BLM lacks similarity to any other known proteins or motifs. We have expressed the first 431 amino acids of this domain as a fusion to a hexahistidine tag (BLM N431) in Escherichia coli. A method of purification was developed which involves elution from Ni-NTA resin in imidazole and EDTA, followed by treatment with DTT and gel filtration on Sephacryl-300. The treatment with EDTA and DTT prevents and disrupts aggregation of BLM N431. The purified protein appears to form hexamers and dodecamers, suggesting that the N-terminal domain of BLM is involved in the organization of the quaternary structure of BLM.

Research paper thumbnail of A role for PML and the nuclear body in genomic stability

Oncogene, 1999

The PML gene of acute promyelocytic leukemia (APL) encodes a cell-growth and tumor suppressor. PM... more The PML gene of acute promyelocytic leukemia (APL) encodes a cell-growth and tumor suppressor. PML localizes to discrete nuclear bodies (NBs) that are disrupted in APL cells. The Bloom syndrome gene BLM encodes a RecQ DNA helicase, whose absence from the cell results in genomic instability epitomized by high levels of sister-chromatid exchange (SCE) and cancer predisposition. We show here that BLM colocalizes with PML to the NB. In cells from persons with Bloom syndrome the localization of PML is unperturbed, whereas in APL cells carrying the PML-RARa oncoprotein, both PML and BLM are delocalized from the NB into microspeckled nuclear regions. Treatment with retinoic acid (RA) induces the relocalization of both proteins to the NB. In primary PML7/7 cells, BLM fails to accumulate in the NB. Strikingly, in PML7/7 cells the frequency of SCEs is increased relative to PML+/+ cells. These data demonstrate that BLM is a constituent of the NB and that PML is required for its accumulation in these nuclear domains and for the normal function of BLM. Thus, our ®ndings suggest a role for BLM in APL pathogenesis and implicate the PML NB in the maintenance of genomic stability.

Research paper thumbnail of The DNA Helicase Activity of BLM Is Necessary for the Correction of the Genomic Instability of Bloom Syndrome Cells

Molecular Biology of the Cell, 1999

Bloom syndrome (BS) is a rare autosomal recessive disorder characterized by growth deficiency, im... more Bloom syndrome (BS) is a rare autosomal recessive disorder characterized by growth deficiency, immunodeficiency, genomic instability, and the early development of cancers of many types. BLM, the protein encoded by BLM, the gene mutated in BS, is localized in nuclear foci and absent from BS cells. BLMencodes a DNA helicase, and proteins from three missense alleles lack displacement activity. BLM transfected into BS cells reduces the frequency of sister chromatid exchanges and restores BLM in the nucleus. Missense alleles fail to reduce the sister chromatid exchanges in transfected BS cells or restore the normal nuclear pattern. BLM complements a phenotype of aSaccharomyces cerevisiae sgs1 top3 strain, and the missense alleles do not. This work demonstrates the importance of the enzymatic activity of BLM for its function and nuclear localization pattern.

Research paper thumbnail of Cloning of PBDX, an MIC2-related gene that spans the pseudoautosomal boundary on chromosome Xp

Research paper thumbnail of DEGS2 polymorphism associated with cognition in schizophrenia is associated with gene expression in brain

Translational psychiatry, 2015

A genome-wide association study of cognitive deficits in patients with schizophrenia in Japan fou... more A genome-wide association study of cognitive deficits in patients with schizophrenia in Japan found association with a missense genetic variant (rs7157599, Asn8Ser) in the delta(4)-desaturase, sphingolipid 2 (DEGS2) gene. A replication analysis using Caucasian samples showed a directionally consistent trend for cognitive association of a proxy single-nucleotide polymorphism (SNP), rs3783332. Although the DEGS2 gene is expressed in human brain, it is unknown how DEGS2 expression varies during human life and whether it is affected by psychiatric disorders and genetic variants. To address these questions, we examined DEGS2 messenger RNA using next-generation sequencing in postmortem dorsolateral prefrontal cortical tissue from a total of 418 Caucasian samples including patients with schizophrenia, bipolar disorder and major depressive disorder. DEGS2 is expressed at very low levels prenatally and increases gradually from birth to adolescence and consistently expressed across adulthood....

Research paper thumbnail of Contrasting changes in DRD1 and DRD2 splice variant expression in schizophrenia and affective disorders, and associations with SNPs in postmortem brain

Molecular Psychiatry, 2013

Dopamine 2 receptor (DRD2) is of major interest to the pathophysiology of schizophrenia (SCZ) bot... more Dopamine 2 receptor (DRD2) is of major interest to the pathophysiology of schizophrenia (SCZ) both as a target for antipsychotic drug action as well as a SCZ-associated risk gene. The dopamine 1 receptor (DRD1) is thought to mediate some of the cognitive deficits in SCZ, including impairment of working memory that relies on normal dorsolateral prefrontal cortex (DLPFC) function. To better understand the association of dopamine receptors with SCZ, we studied the expression of three DRD2 splice variants and the DRD1 transcript in DLPFC, hippocampus and caudate nucleus in a large cohort of subjects (~700), including patients with SCZ, affective disorders and nonpsychiatric controls (from 14th gestational week to 85 years of age), and examined genotype-expression associations of 278 single-nucleotide polymorphisms (SNPs) located in or near DRD2 and DRD1 genes. Expression of D2S mRNA and D2S/D2-long (D2L) ratio were significantly increased in DLPFC of patients with SCZ relative to controls (P&lt;0.0001 and P&lt;0.0001, respectively), whereas D2L, D2Longer and DRD1 were decreased (P&lt;0.0001). Patients with affective disorders showed an opposite pattern: reduced expression of D2S (major depressive disorder, P&lt;0.0001) and increased expression of D2L and DRD1 (bipolar disorder, P&lt;0.0001). Moreover, SCZ-associated risk alleles at rs1079727, rs1076560 and rs2283265 predicted increased D2S/D2L expression ratio (P&lt;0.05) in control individuals. Our data suggest that altered splicing of DRD2 and expression of DRD1 may constitute a pathophysiological mechanism in risk for SCZ and affective disorders. The association between SCZ risk-associated polymorphism and the ratio of D2S/D2L is consistent with this possibility.

Research paper thumbnail of Analysis of Copy Number Variations in Brain DNA from Patients with Schizophrenia and Other Psychiatric Disorders

Biological Psychiatry, 2012

Background-Clinical studies have identified several regions of the genome with copy number variat... more Background-Clinical studies have identified several regions of the genome with copy number variations (CNVs) associated with diverse neurodevelopmental behavioral disorders. Methods-We analyzed 1M SNP genotype arrays (Illumina BeadArrays) for evidence of previously reported recurrent CNVs and enriched genome wide CNV burden in DNA from 600 brains, including 441 individuals with various psychiatric diagnoses. We explored gene expression in the dorsolateral prefrontal cortex in selected cases with CNVs and in other subjects using Illumina BeadArrays (568 subjects in total), and additionally in 66-92 subjects using quantitative real-time PCR. Results-CNVs in previously reported genomic regions were identified in 4/193 patients with the diagnosis of schizophrenia (1q21.1, 11q25, 15q11.2, 22q11), 4/238 patients with mood disorders (11q25, 15q11.2, 22q11), and 1/10 patients with autism (2p16.3). No evidence of increased genome wide CNV burden was observed in cases with schizophrenia or mood disorders although the study is underpowered to observe rare events. mRNA expression patterns suggested incomplete molecular penetrance of observed CNVs. Conclusions-Our data confirm in brain DNA the presence of certain recurrent CNVs in a small percentage of patients with psychiatric diagnoses.

Research paper thumbnail of Evidence of Sex-Modulated Association of ZNF804A with Schizophrenia

Biological Psychiatry, 2011

The single nucleotide polymorphism (SNP) rs1344706 in ZNF804A (2q32.1) has been associated with s... more The single nucleotide polymorphism (SNP) rs1344706 in ZNF804A (2q32.1) has been associated with schizophrenia in a genome-wide association study (GWAS). A recent candidate gene study, which replicated the positive association with rs1344706, identified another positive SNP (rs7597593) in ZNF804A associated with schizophrenia. We performed an association study of rs7597593 in four GWAS cohorts of European ancestry. Postmortem human brain expression data of normal Caucasian individuals (n = 89) was also analyzed for examining the effect of rs7597593 on ZNF804A messenger RNA expression, using logistic regression and linear regression. We found that rs7597593 was significantly associated with schizophrenia in the combined GWAS datasets (n = 5023, odds ratio [OR](combined) = 1.15, p = .0011). Analysis of stratification by sex showed that the association was driven by the female subjects (OR = 1.29, p = .0002) and was not significant in male subjects (OR = 1.08, p = .148) in the combined sample of four cohorts. A sex by genotype interaction was near significant in both the Genetic Association Information Network sample (p = .0532) and the combined sample of four cohorts (p(combined) = .0531). Gene expression analysis showed no main effects but a significant female-specific association (p(female) = .047, p(male) = .335) and sex by genotype interaction (p = .0166) for rs7597593. Our data suggest a clinical and molecular modulation by sex of the association of ZNF804A SNP rs7597593 and risk of schizophrenia.

Research paper thumbnail of Characterization of STIP, a multi-domain nuclear protein, highly conserved in metazoans, and essential for embryogenesis in Caenorhabditis elegans

Experimental Cell Research, 2007

We report here the identification and characterization of STIP, a multi-domain nuclear protein th... more We report here the identification and characterization of STIP, a multi-domain nuclear protein that contains a G-patch, a coiled-coil, and several short tryptophan-tryptophan repeats highly conserved in metazoan species. To analyze their functional role in vivo, we cloned nematode stip-1 genes and determined the spatiotemporal pattern of Caenorhabditis elegans STIP-1 protein. RNA analyses and Western blots revealed that stip-1 mRNA was produced via trans-splicing and translated as a 95-kDa protein. Using reporter constructs, we found STIP-1 to be expressed at all developmental stages and in many tissue/cell types including worm oocyte nuclei. We found that STIP-1 is targeted to the nucleus and forms large polymers with a rod-like shape when expressed in mammalian cells. Using deletion mutants, we mapped the regions of STIP-1 involved in nuclear import and polymer assembly. We further showed that knockdown of C. elegans stip-1 by RNA interference arrested development and resulted in morphologic abnormalities around the 16-cell stage followed by 100% lethality, suggesting its essential role in worm embryogenesis. Importantly, the embryonic lethal phenotype could be faithfully rescued with Drosophila and human genes via transgenic expression. Our data provide the first direct evidence that STIP have a conserved essential nuclear function across metazoans from worms to humans.

Research paper thumbnail of Temporal dynamics and genetic control of transcription in the human prefrontal cortex

Research paper thumbnail of DNA methylation changes in the postmortem dorsolateral prefrontal cortex of patients with schizophrenia

Frontiers in genetics, 2014

Schizophrenia is a complex psychiatric disorder with a lifetime morbidity rate of 0.5-1.0%. The p... more Schizophrenia is a complex psychiatric disorder with a lifetime morbidity rate of 0.5-1.0%. The pathophysiology of schizophrenia still remains obscure. Accumulating evidence indicates that DNA methylation, which is the addition of a methyl group to the cytosine in a CpG dinucleotide, might play an important role in the pathogenesis of schizophrenia. To gain further insight into the molecular mechanisms underlying schizophrenia, a genome-wide DNA methylation profiling (27,578 CpG dinucleotides spanning 14,495 genes) of the human dorsolateral prefrontal cortex (DLPFC) was conducted in a large cohort (n = 216) of well characterized specimens from individuals with schizophrenia and non-psychiatric controls, combined with an analysis of genetic variance at ~880,000 SNPs. Aberrant DNA methylation in schizophrenia was identified at 107 CpG sites at 5% Bonferroni correction (p < 1.99 × 10(-6)). Of these significantly altered sites, hyper-DNA methylation was observed at 79 sites (73.8%), ...

Research paper thumbnail of Characteristics of the Cation Cotransporter NKCC1 in Human Brain: Alternate Transcripts, Expression in Development, and Potential Relationships to Brain Function and Schizophrenia

The Journal of Neuroscience, 2014

Early in development, GABA, an inhibitory neurotransmitter in adults, is excitatory. NKCC1 (SLC12... more Early in development, GABA, an inhibitory neurotransmitter in adults, is excitatory. NKCC1 (SLC12A2) encodes one of two cation chloride cotransporters mediating the conversion of GABA from excitatory to inhibitory. Using 3′ and 5′ RACE and PCR, we verified previously characterized alternative transcripts of NKCC1a (1–27) and NKCC1b (1–27(Δ21)), identified new NKCC1 transcripts, and explored their expression patterns during human prefrontal cortical development. A novel ultra-short transcript (1–2a) was expressed preferentially in the fetus. Expression of NKCC1b and 1–2a were decreased in schizophrenia compared with controls (NKCC1b: 0.8-fold decrease,p= 0.013; 1–2a: 0.8-fold decrease,p= 0.006). Furthermore, the expression of NKCC1b was associated with NKCC1 polymorphism rs3087889. The minor allele at rs3087889, associated with reduced NKCC1b expression (homozygous for major allele:N= 37; homozygous for minor allele:N= 15; 1.5-fold decrease;p< 0.01), was also associated with a mod...

Research paper thumbnail of Assessment of genetic risk for distribution of total interstitial white matter neurons in dorsolateral prefrontal cortex: role in schizophrenia

Schizophrenia research, Oct 27, 2016

Research paper thumbnail of Transcript-Specific Associations of SLC12A5 (KCC2) in Human Prefrontal Cortex with Development, Schizophrenia, and Affective Disorders

The Journal of Neuroscience, 2012

The neuron-specific K+-Cl−cotransporter SLC12A5, also known as KCC2, helps mediate the electrophy... more The neuron-specific K+-Cl−cotransporter SLC12A5, also known as KCC2, helps mediate the electrophysiological effects of GABA. The pattern of KCC2 expression during early brain development suggests that its upregulation drives the postsynaptic switch of GABA from excitation to inhibition. We previously found decreased expression of full-length KCC2 in the postmortem hippocampus of patients with schizophrenia, but not in the dorsolateral prefrontal cortex (DLPFC). Using PCR and rapid amplification of cDNA ends, we discovered several previously unrecognized alternative KCC2 transcripts in both human adult and fetal brain in addition to the previously identified full-length (NM_020708.3) and truncated (AK098371) transcripts. We measured the expression levels of four relatively abundant truncated splice variants, including three novel transcripts (ΔEXON6, EXON2B, and EXON6B) and one previously described transcript (AK098371), in a large human cohort of nonpsychiatric controls across the l...

Research paper thumbnail of Revisiting DARPP-32 in postmortem human brain: changes in schizophrenia and bipolar disorder and genetic associations with t-DARPP-32 expression

Molecular Psychiatry, 2013

Dopamine-and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32 or PPP1R1B) has b... more Dopamine-and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32 or PPP1R1B) has been of interest in schizophrenia owing to its critical function in integrating dopaminergic and glutaminergic signaling. In a previous study, we identified single-nucleotide polymorphisms (SNPs) and a frequent haplotype associated with cognitive and imaging phenotypes that have been linked with schizophrenia, as well as with expression of prefrontal cortical DARPP-32 messenger RNA (mRNA) in a relatively small sample of postmortem brains. In this study, we examined the association of expression of two major DARPP-32 transcripts, full-length (FL-DARPP-32) and truncated (t-DARPP-32), with genetic variants of DARPP-32 in three brain regions receiving dopaminergic input and implicated in schizophrenia (the dorsolateral prefrontal cortex (DLPFC), hippocampus and caudate) in a much larger set of postmortem samples from patients with schizophrenia, bipolar disorder, major depression and normal controls (4700 subjects). We found that the expression of t-DARPP-32 was increased in the DLPFC of patients with schizophrenia and bipolar disorder, and was strongly associated with genotypes at SNPs (rs879606, rs90974 and rs3764352), as well as the previously identified 7-SNP haplotype related to cognitive functioning. The genetic variants that predicted worse cognitive performance were associated with higher t-DARPP-32 expression. Our results suggest that variation in PPP1R1B affects the abundance of the splice variant t-DARPP-32 mRNA and may reflect potential molecular mechanisms implicated in schizophrenia and affective disorders.

Research paper thumbnail of CHRNA7 and CHRFAM7A mRNAs: Co-Localized and Their Expression Levels Altered in the Postmortem Dorsolateral Prefrontal Cortex in Major Psychiatric Disorders

The American journal of psychiatry, Jan 24, 2015

CHRNA7, coding α-7 nicotinic acetylcholine receptor (α7 nAChR), is involved in cognition through ... more CHRNA7, coding α-7 nicotinic acetylcholine receptor (α7 nAChR), is involved in cognition through interneuron modulation of dopamine and glutamate signaling. CHRNA7 and its partially duplicated chimeric gene CHRFAM7A have been implicated in schizophrenia through linkage and association studies. Expression of CHRNA7 and CHRFAM7A mRNA was measured in the postmortem prefrontal cortex in more than 700 subjects, including patients with schizophrenia, bipolar disorder, major depression, and normal comparison subjects. The effects of antipsychotics and nicotine, as well as associations of CHRNA7 SNPs with gene expression, were explored. Fluorescent in-situ hybridization was used to examine coexpression of both transcripts in the human cortex. CHRFAM7A expression and CHRFAM7A/CHRNA7 ratios were higher in fetal compared with postnatal life, whereas CHRNA7 expression was relatively stable. CHRFAM7A expression was significantly elevated in all diagnostic groups, while CHRNA7 expression was redu...

Research paper thumbnail of GAD2 Alternative Transcripts in the Human Prefrontal Cortex, and in Schizophrenia and Affective Disorders

PloS one, 2016

Genetic variation and early adverse environmental events work together to increase risk for schiz... more Genetic variation and early adverse environmental events work together to increase risk for schizophrenia. γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in adult mammalian brain, plays a major role in normal brain development, and has been strongly implicated in the pathobiology of schizophrenia. GABA synthesis is controlled by two glutamic acid decarboxylase (GAD) genes, GAD1 and GAD2, both of which produce a number of alternative transcripts. Genetic variants in the GAD1 gene are associated with increased risk for schizophrenia, and reduced expression of its major transcript in the human dorsolateral prefrontal cortex (DLPFC). No consistent changes in GAD2 expression have been found in brains from patients with schizophrenia. In this work, with the use of RNA sequencing and PCR technologies, we confirmed and tracked the expression of an alternative truncated transcript of GAD2 (ENST00000428517) in human control DLPFC homogenates across lifespan besides the well...

Research paper thumbnail of DNA Methylation Signatures in Development and Aging of the Human Prefrontal Cortex

The American Journal of Human Genetics, 2012

The human prefrontal cortex (PFC), a mastermind of the brain, is one of the last brain regions to... more The human prefrontal cortex (PFC), a mastermind of the brain, is one of the last brain regions to mature. To investigate the role of epigenetics in the development of PFC, we examined DNA methylation in~14,500 genes at~27,000 CpG loci focused on 5 0 promoter regions in 108 subjects range in age from fetal to elderly. DNA methylation in the PFC shows unique temporal patterns across life. The fastest changes occur during the prenatal period, slow down markedly after birth and continue to slow further with aging. At the genome level, the transition from fetal to postnatal life is typified by a reversal of direction, from demethylation prenatally to increased methylation postnatally. DNA methylation is strongly associated with genotypic variants and correlates with expression of a subset of genes, including genes involved in brain development and in de novo DNA methylation. Our results indicate that promoter DNA methylation in the human PFC is a highly dynamic process modified by genetic variance and regulating gene transcription. Additional discovery is made possible with a stand-alone application, BrainCloudMethyl.

Research paper thumbnail of DNA Methylation Signatures in Development and Aging of the Human Prefrontal Cortex

The American Journal of Human Genetics, 2012

Research paper thumbnail of Expression of GABA Signaling Molecules KCC2, NKCC1, and GAD1 in Cortical Development and Schizophrenia

Journal of Neuroscience, 2011

GABA signaling molecules are critical for both human brain development and the pathophysiology of... more GABA signaling molecules are critical for both human brain development and the pathophysiology of schizophrenia. We examined the expression of transcripts derived from three genes related to GABA signaling [GAD1 (GAD67 and GAD25), SLC12A2 (NKCC1), and SLC12A5 (KCC2)] in the prefrontal cortex (PFC) and hippocampal formation of a large cohort of nonpsychiatric control human brains (n ϭ 240) across the lifespan (from fetal week 14 to 80 years) and in patients with schizophrenia (n ϭ 30-31), using quantitative RT-PCR. We also examined whether a schizophrenia risk-associated promoter SNP in GAD1 (rs3749034) is related to expression of these transcripts. Our studies revealed that development and maturation of both the PFC and hippocampal formation are characterized by progressive switches in expression from GAD25 to GAD67 and from NKCC1 to KCC2. Previous studies have demonstrated that the former leads to GABA synthesis, and the latter leads to switching from excitatory to inhibitory neurotransmission. In the hippocampal formation, GAD25/GAD67 and NKCC1/KCC2 ratios are increased in patients with schizophrenia, reflecting a potentially immature GABA physiology. Remarkably, GAD25/GAD67 and NKCC1/KCC2 expression ratios are associated with rs3749034 genotype, with risk alleles again predicting a relatively less mature pattern. These findings suggest that abnormalities in GABA signaling critical to brain development contribute to genetic risk for schizophrenia.

Research paper thumbnail of Purification of Overexpressed Hexahistidine-Tagged BLM N431 as Oligomeric Complexes

Protein Expression and Purification, 1999

BLM is a DNA helicase encoded by a gene which is mutated in persons with Bloom's syndrome. The pr... more BLM is a DNA helicase encoded by a gene which is mutated in persons with Bloom's syndrome. The protein is a member of the RecQ subfamily of helicases and contains a central domain constituted by the seven motifs conserved in all helicases. In contrast, the N-terminal portion of BLM lacks similarity to any other known proteins or motifs. We have expressed the first 431 amino acids of this domain as a fusion to a hexahistidine tag (BLM N431) in Escherichia coli. A method of purification was developed which involves elution from Ni-NTA resin in imidazole and EDTA, followed by treatment with DTT and gel filtration on Sephacryl-300. The treatment with EDTA and DTT prevents and disrupts aggregation of BLM N431. The purified protein appears to form hexamers and dodecamers, suggesting that the N-terminal domain of BLM is involved in the organization of the quaternary structure of BLM.

Research paper thumbnail of A role for PML and the nuclear body in genomic stability

Oncogene, 1999

The PML gene of acute promyelocytic leukemia (APL) encodes a cell-growth and tumor suppressor. PM... more The PML gene of acute promyelocytic leukemia (APL) encodes a cell-growth and tumor suppressor. PML localizes to discrete nuclear bodies (NBs) that are disrupted in APL cells. The Bloom syndrome gene BLM encodes a RecQ DNA helicase, whose absence from the cell results in genomic instability epitomized by high levels of sister-chromatid exchange (SCE) and cancer predisposition. We show here that BLM colocalizes with PML to the NB. In cells from persons with Bloom syndrome the localization of PML is unperturbed, whereas in APL cells carrying the PML-RARa oncoprotein, both PML and BLM are delocalized from the NB into microspeckled nuclear regions. Treatment with retinoic acid (RA) induces the relocalization of both proteins to the NB. In primary PML7/7 cells, BLM fails to accumulate in the NB. Strikingly, in PML7/7 cells the frequency of SCEs is increased relative to PML+/+ cells. These data demonstrate that BLM is a constituent of the NB and that PML is required for its accumulation in these nuclear domains and for the normal function of BLM. Thus, our ®ndings suggest a role for BLM in APL pathogenesis and implicate the PML NB in the maintenance of genomic stability.

Research paper thumbnail of The DNA Helicase Activity of BLM Is Necessary for the Correction of the Genomic Instability of Bloom Syndrome Cells

Molecular Biology of the Cell, 1999

Bloom syndrome (BS) is a rare autosomal recessive disorder characterized by growth deficiency, im... more Bloom syndrome (BS) is a rare autosomal recessive disorder characterized by growth deficiency, immunodeficiency, genomic instability, and the early development of cancers of many types. BLM, the protein encoded by BLM, the gene mutated in BS, is localized in nuclear foci and absent from BS cells. BLMencodes a DNA helicase, and proteins from three missense alleles lack displacement activity. BLM transfected into BS cells reduces the frequency of sister chromatid exchanges and restores BLM in the nucleus. Missense alleles fail to reduce the sister chromatid exchanges in transfected BS cells or restore the normal nuclear pattern. BLM complements a phenotype of aSaccharomyces cerevisiae sgs1 top3 strain, and the missense alleles do not. This work demonstrates the importance of the enzymatic activity of BLM for its function and nuclear localization pattern.