Vimala Thummalapalli - Academia.edu (original) (raw)
Related Authors
Rajiv Gandhi University Of Knowledge Technologies
Uploads
Papers by Vimala Thummalapalli
—The study of reversible circuits holds great promise for emerging technologies. Reversible circu... more —The study of reversible circuits holds great promise for emerging technologies. Reversible circuits offer the possibility for great reductions in power consumption, and quantum computers will require logically reversible digital circuits. Many different reversible implementations of logical and arithmetic units have been proposed in the literature, but very few reversible floating-point designs exist. Floating-point operations are needed very frequently in nearly all computing disciplines, and studies have shown floating-point addition to be the most oft used floating-point operation. In this paper we present for the first time a reversible floating-point adder that closely follows the IEEE754 specification for binary floating-point arithmetic. Our design requires reversible designs of a controlled swap unit, a subtracter, an alignment unit, signed integer representation conversion units, an integer adder, a normalization unit, and a rounding unit. We analyze these major components in terms of quantum cost, garbage outputs, and constant inputs.
—The study of reversible circuits holds great promise for emerging technologies. Reversible circu... more —The study of reversible circuits holds great promise for emerging technologies. Reversible circuits offer the possibility for great reductions in power consumption, and quantum computers will require logically reversible digital circuits. Many different reversible implementations of logical and arithmetic units have been proposed in the literature, but very few reversible floating-point designs exist. Floating-point operations are needed very frequently in nearly all computing disciplines, and studies have shown floating-point addition to be the most oft used floating-point operation. In this paper we present for the first time a reversible floating-point adder that closely follows the IEEE754 specification for binary floating-point arithmetic. Our design requires reversible designs of a controlled swap unit, a subtracter, an alignment unit, signed integer representation conversion units, an integer adder, a normalization unit, and a rounding unit. We analyze these major components in terms of quantum cost, garbage outputs, and constant inputs.