selçuk utaş - Academia.edu (original) (raw)

selçuk utaş

Related Authors

Na'ama Pat-El

Katherine Butler Schofield

Egil Bakka

Egil Bakka

Norwegian University of Science and Technology

Armando Marques-Guedes

Eitan Grossman

Martin Haspelmath

Rob S E A N Wilson

Mauro Grondona

Javier Marín-López

Thomás A S Haddad

Uploads

Papers by selçuk utaş

Research paper thumbnail of DC-driven subatmospheric glow discharges in the infrared-stimulated

Journal of materials science. Materials in electronics, Mar 1, 2024

This paper presents a conceptual framework for experimental research combined with numerical anal... more This paper presents a conceptual framework for experimental research combined with numerical analysis on direct current (DC) glow discharges in microscale planar gas discharge-semiconductor systems (GDSS). In the experimental section, several structural and elemental analyses, including SEM, EDAX, AFM, and near-infrared absorption spectra measurements were carried out for compound semiconductor zinc selenide (ZnSe) cathode sample. Argon (Ar) was charged into the plasma reactor cell of GDSS at pressures of 100 Torr subatmospheric and 760 Torr atmospheric, respectively, by a vacuum pump-gas filling station. Glow discharge light emissions from plasma, excited under three different intensity levels (dark, weak, strong) of infrared beam illumination on ZnSe cathode electrode, were measured by using a phomultiplier tube that is sensitive to UV-Visible wavelengths. In the numerical analysis section, simulation studies were carried out on the two-dimensional gas discharge-semiconductor microplasma system (GDSµPS) cell models using the finite-element method (FEM) solver COMSOL Multiphysics DC plasma program. Calculations and predictions were based on mixture-averaged diffusion drift theory and Maxwellian electron energy distribution function. GDSµPS cell was modeled in a square chamber with planar anode/cathode electrode pair coupled at a 50 µm discharge gap. Single side of ZnSe cathode was finely micro-digitated to increase the effective surface area for enhanced electron emission to the gas discharge cell. The electrical equivalent circuit (EEC) of the proposed model was driven by 1.0 kV DC voltage source. Binary Ar/H 2 gas medium in a mixture of 3:2 molar ratio was introduced to the gas discharge chamber at constant 200 Torr subatmospheric pressure. Simulations were run for normal glow discharges to exhibit the electrical fast transient glow discharge behaviours from electron field emission state to self-sustained normal

Research paper thumbnail of The features of the InGaAs/InP detectors in plasma converter systems

Journal of Energy Systems

The features of the plasma cell with the InGaAs/InP detector are explored. The detector is compos... more The features of the plasma cell with the InGaAs/InP detector are explored. The detector is composed of InGaAs and InP wafers. Mean electron energies, migrative electron flux and current densities are evaluated by theoretical simulation analyses. The results helped to understand the uncertain plasma parameters and made the plasma structure more understandable, thereby, the complex plasma reactions can be solved via the COMSOL package. New plasma studies have focused on uniform discharges. However, the optimization of the plasma structure should be ascertained in order to explain the complex physical and chemical features in the complicated media having different discharge mechanisms. The non-thermal plasmas are famous especially for the microelectronic systems and surface processes such as etching and purification.

Research paper thumbnail of DC-driven subatmospheric glow discharges in the infrared-stimulated

Journal of materials science. Materials in electronics, Mar 1, 2024

This paper presents a conceptual framework for experimental research combined with numerical anal... more This paper presents a conceptual framework for experimental research combined with numerical analysis on direct current (DC) glow discharges in microscale planar gas discharge-semiconductor systems (GDSS). In the experimental section, several structural and elemental analyses, including SEM, EDAX, AFM, and near-infrared absorption spectra measurements were carried out for compound semiconductor zinc selenide (ZnSe) cathode sample. Argon (Ar) was charged into the plasma reactor cell of GDSS at pressures of 100 Torr subatmospheric and 760 Torr atmospheric, respectively, by a vacuum pump-gas filling station. Glow discharge light emissions from plasma, excited under three different intensity levels (dark, weak, strong) of infrared beam illumination on ZnSe cathode electrode, were measured by using a phomultiplier tube that is sensitive to UV-Visible wavelengths. In the numerical analysis section, simulation studies were carried out on the two-dimensional gas discharge-semiconductor microplasma system (GDSµPS) cell models using the finite-element method (FEM) solver COMSOL Multiphysics DC plasma program. Calculations and predictions were based on mixture-averaged diffusion drift theory and Maxwellian electron energy distribution function. GDSµPS cell was modeled in a square chamber with planar anode/cathode electrode pair coupled at a 50 µm discharge gap. Single side of ZnSe cathode was finely micro-digitated to increase the effective surface area for enhanced electron emission to the gas discharge cell. The electrical equivalent circuit (EEC) of the proposed model was driven by 1.0 kV DC voltage source. Binary Ar/H 2 gas medium in a mixture of 3:2 molar ratio was introduced to the gas discharge chamber at constant 200 Torr subatmospheric pressure. Simulations were run for normal glow discharges to exhibit the electrical fast transient glow discharge behaviours from electron field emission state to self-sustained normal

Research paper thumbnail of The features of the InGaAs/InP detectors in plasma converter systems

Journal of Energy Systems

The features of the plasma cell with the InGaAs/InP detector are explored. The detector is compos... more The features of the plasma cell with the InGaAs/InP detector are explored. The detector is composed of InGaAs and InP wafers. Mean electron energies, migrative electron flux and current densities are evaluated by theoretical simulation analyses. The results helped to understand the uncertain plasma parameters and made the plasma structure more understandable, thereby, the complex plasma reactions can be solved via the COMSOL package. New plasma studies have focused on uniform discharges. However, the optimization of the plasma structure should be ascertained in order to explain the complex physical and chemical features in the complicated media having different discharge mechanisms. The non-thermal plasmas are famous especially for the microelectronic systems and surface processes such as etching and purification.

Log In