Molecular Genetics of the Ubiquitin System (original) (raw)

References

  1. Hershko, A., 1983, Ubiquitin: Roles in protein modification and breakdown, Cell 34: 11–12.
    Article PubMed CAS Google Scholar
  2. Finley, D., Ciechanover, A., and Varshavsky, A., 1984, Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85, Cell 37: 43–55.
    Article PubMed CAS Google Scholar
  3. Ciechanover, A., Finley, D., and Varshavsky, A., 1984, Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85, Cell 37: 57–66.
    Article PubMed CAS Google Scholar
  4. Özkaynak, E., Finley, D., and Varshavsky, A., 1984, The yeast ubiquitin gene: Head-to-tail repeats encoding a polyubiquitin precursor protein, Nature 312: 663–666.
    Article PubMed Google Scholar
  5. Dworkin-Rastl, E., Shrutkowski, A., and Dworkin, M. B., 1984, Multiple ubiquitin mRNAs during Xenopus laevis development contain tandem repeats of the 76 amino acid coding sequence, Cell 39: 321–325.
    Article PubMed CAS Google Scholar
  6. Bond, U., and Schlesinger, M. J., 1985, Ubiquitin is a heat shock protein in chicken embryo fibroblasts, Mol. Cell. Biol. 5: 949–956.
    PubMed CAS Google Scholar
  7. Wiborg, O., Pedersen, M. S., Wind, A., Berglund, L. E., Marcker, K. A., and Vuust, J., 1985, The human ubiquitin multigene family; some genes contain multiple directly repeated ubiquitin coding sequences, EMBO J. 4: 755–759.
    PubMed CAS Google Scholar
  8. Arribas, C., Sampedro, J., and Izquierdo, M., 1986, The ubiquitin genes in D. melanogaster: Transcription and polymorphism, Biochim. Biophys. Acta 868: 119–127.
    Article CAS Google Scholar
  9. Gausing, K., and Barkardottir, R., 1986, Structure and expression of ubiquitin genes in higher plants, Eur. J. Biochem. 158: 57–62.
    Article PubMed CAS Google Scholar
  10. Giorda, R., and Ennis, H. L., 1987, Structure of two developmentally regulated Dictyostelium discoideum ubiquitin genes, Mol. Cell. Biol. 6: 2097–2103.
    Google Scholar
  11. Baker, R. T., and Board, P. G., 1987, The human ubiquitin gene family: Structure of a gene and pseudogenes from the Ub B subfamily, Nucleic Acids Res. 15: 443–463.
    Article PubMed CAS Google Scholar
  12. Swindle, J., Ajioka, J., Eisen, H., Sanwal, B., Jacquemot, C., Browder, Z., and Buck, G., 1988, The genomic organization and transcription of the ubiquitin genes of Trypanosoma cruzi, EMBO J. (in press).
    Google Scholar
  13. Lund, P. K., Moats-Staats, B. M., Simmons, J. G., Hoyt, E., D’Ercole, A. J., Martin, F., and Van Wyk, J. J., 1985, Nucleotide sequence analysis of a cDNA encoding human ubiquitin reveals that ubiquitin is synthesized as a precursor, J. Biol. Chem. 260: 7609–7613.
    PubMed CAS Google Scholar
  14. St. John, T., Gallatin, W. M., Siegelman, M., Smith, H. T., Fried, V. A., and Weissman, I. L., 1986, Expression cloning of a lymphocyte homing receptor cDNA: Ubiquitin is the reactive species, Science 221: 845–850.
    Article Google Scholar
  15. Westphal, M., Muller-Taubenberger, A., Noegel, A., and Gerisch, G., 1986, Transcript regulation and carboxyl terminal extension of ubiquitin in Dictyostelium discoideum, FEBS Lett. 209: 92–96.
    Article CAS Google Scholar
  16. Özkaynak, E., Finley, D., Solomon, M. J., and Varshavsky, A., 1987, The yeast ubiquitin genes: A family of natural gene fusions, EMBO J. 6: 1429–1439.
    PubMed Google Scholar
  17. Salvesen, G., Lloyd, C., and Farley, D., 1987, cDNA encoding a human homolog of yeast ubiquitin 1, Nucleic Acids Res. 15: 5485–5486.
    Article PubMed CAS Google Scholar
  18. Jentsch, S., McGrath, J. P., and Varshavsky, A., 1987, The DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme, Nature 329: 131–134.
    Article PubMed CAS Google Scholar
  19. Finley, D., and Varshavsky, A., 1985, The ubiquitin system: Functions and mechanisms, Trends Biochem. Sci. 47: 275–284.
    Google Scholar
  20. Schlesinger, M. J., and Bond, U., 1987, Ubiquitin genes, Oxford Surv. Eukaryotic Genes 4: 77–91.
    CAS Google Scholar
  21. Finley, D., Özkaynak, E., and Varshavsky, A., 1987, The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation and other stresses, Cell 48: 1035–1046.
    Article PubMed CAS Google Scholar
  22. Parag, H. A., Raboy, B., and Kulka, R. G., 1987, Effect of heat shock on protein degradation in mammalian cells: Involvement of the ubiquitin system, EMBO J. 6: 55–61.
    PubMed CAS Google Scholar
  23. Struhl, K., 1983, The new yeast genetics, Nature 305: 391–397.
    Article PubMed CAS Google Scholar
  24. Bachmair, A., Finley, D., and Varshavsky, A., 1986, In vivo half-life of a protein is a function of its amino-terminal residue, Science 234: 179–186.
    Article PubMed CAS Google Scholar
  25. Mita, S., Yasuda, H., Marunouchi, T., Ishiko, S., and Yamada, M., 1980, A temperature-sensitive mutant of cultured mouse cells defective in chromosome condensation, Exp. Cell Res. 126: 407–416.
    Article PubMed CAS Google Scholar
  26. Matsumoto, Y., Yasuda, H., Mita, S., Marunouchi, T., and Yamada, M., 1980, Evidence for involvement of H1 histone phosphorylation in chromosome condensation, Nature 284: 181–183.
    Article PubMed CAS Google Scholar
  27. Yasuda, H., Matsumoto, Y., Mita, S., Marunouchi, T., and Yamada, M., 1981, A mouse temperature-sensitive mutant defective in H1 histone phosphorylation is defective in deoxyribonucleic acid synthesis and chromosome condensation, Biochemistry 20: 4414–4419.
    Article PubMed CAS Google Scholar
  28. Marunouchi, T., Yasuda, H., Matsumoto, Y., and Yamada, M., 1980, Disappearance of a chromosomal basic protein from cells of a mouse temperature-sensitive mutant defective in histone phosphorylation, Biochem. Biophys. Res. Commun. 95: 126–131.
    Article PubMed CAS Google Scholar
  29. Matsumoto, Y., Yasuda, H., Marunouchi, T., and Yamada, M., 1983, Decrease in uH2A (protein A24) in a mouse temperature-sensitive mutant, FEBS Lett. 151: 139–142.
    Article PubMed CAS Google Scholar
  30. Ciechanover, A., Elias, S., Heller, H., and Hershko, A., 1982, “Covalent” affinity purification of ubiquitin-activating enzyme, J. Biol. Chem. 257: 2537–2542.
    PubMed CAS Google Scholar
  31. Rabinovitz, M., and Fisher, J. M., 1964, Characteristics of the inhibition of hemoglobin synthesis in rabbit reticulocytes by threo-α-amino-β-chlorobutyric acid. Biochim. Biophys. Acta 91: 313–322.
    PubMed CAS Google Scholar
  32. Goldberg, A. L., and St. John, A. C., 1976, Intracellular protein degradation in mammalian and bacterial cells, Annu. Rev. Biochem. 45: 747–803.
    Article PubMed CAS Google Scholar
  33. Finley, D., 1984, Approaches to molecular genetics of the ubiquitin system, Ph.D. thesis, Massachusetts Institute of Technology.
    Google Scholar
  34. Subjeck, J. R., Sciandra, J. J., and Shyy, T. T., 1985, Analysis of the expression of the two major proteins of the 70 kilodalton mammalian heat shock family, Int. J. Radiat. Biol. 47: 275–284.
    Article CAS Google Scholar
  35. Anathan, J., Goldberg, A. L., and Voellmy, R., 1986, Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes, Science 232: 522–524.
    Article Google Scholar
  36. Aronow, B., Toll, D., Patrick, J., McCartan, K., and Ullman, B., 1986, Dipyridamole-insensitive nucleoside transport in mutant murine T lymphoma cells, J. Biol. Chem. 261: 14467–14473.
    PubMed CAS Google Scholar
  37. Pickard, M. A., Brown, R. R., Paul, B., and Paterson, A. R. P., 1973, Binding of the nucleoside transport inhibitor 4-nitrobenzyl-6-thioinosine to erythrocyte membranes, Can. J. Biochem. 51: 666–672.
    Article PubMed CAS Google Scholar
  38. Plagemann, P. G. W., and Wohlhueter, R. M., 1980, Permeation of nucleosides, nucleic acid bases, and nucleotides in animal cells, Curr. Top. Membr. Transp. 14: 225–330.
    Article CAS Google Scholar
  39. Dingwall, C., and Laskey, R. A., 1986, Protein import into the cell nucleus, Annu. Rev. Cell Biol. 2: 366–390.
    Article Google Scholar
  40. Miller, J., McLachlan, A. D., and Klug, A., 1985, Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes, EMBO J. 4: 1609–1614.
    PubMed CAS Google Scholar
  41. Rhodes, D., and Klug, A., 1986, An underlying repeat in some transcriptional control sequences corresponding to half a double helical turn of DNA, Cell 46: 123–132.
    Article PubMed CAS Google Scholar
  42. Berg, J. M., 1985, Potential metal-binding domains in nucleic acid binding proteins, Science 232: 485–487.
    Article Google Scholar
  43. Wilkinson, K. D., Cox, M. J., O’Connor, L. B., and Shapira, R., 1986, Structure and activities of a variant ubiquitin sequence from baker’s yeast, Biochemistry 25: 4999–5004.
    Article PubMed CAS Google Scholar
  44. Lipman, D. J., and Pearson, W. R., 1985, Rapid and sensitive protein similarity searches, Science 227: 1435–1441.
    Article PubMed CAS Google Scholar
  45. Sharp, P. M., and Li, W., 1987, Ubiquitin genes as a paradigm of concerted evolution of tandem repeats, J. Mol. Evol. 25: 58–64.
    Article PubMed CAS Google Scholar
  46. Pickart, C. M., and Rose, I. A., 1985, Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides, J. Biol. Chem. 260: 7903–7910.
    PubMed CAS Google Scholar
  47. Bond, U., and Schlesinger, M. J., 1986, The chicken ubiquitin gene contains a heat shock promoter and expresses an unstable mRNA in heat-shocked cells, Mol. Cell. Biol. 6: 4602–4610.
    PubMed CAS Google Scholar
  48. Matsumoto, K., Uno, I., and Ishikawa, T., 1983, Control of cell division in Saccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP-dependent protein kinase, Exp. Cell Res. 146: 151–161.
    Article PubMed CAS Google Scholar
  49. Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., Cameron, S., Broach, J., Matsumoto, K., and Wigler, M., 1985, In yeast, RAS proteins are controlling elements of adenylate cyclase, Cell 40: 27–36.
    Article PubMed CAS Google Scholar
  50. Whiteway, M., and Szostak, J. W., 1985, The ARD1 gene of yeast functions in the switch between the mitotic cell cycle and alternative developmental pathways, Cell 43: 483–492.
    Article PubMed CAS Google Scholar
  51. Thevelein, J. M., den Hollander, J. A., and Shulman, R. C., 1984, Trehalase, control of dormancy and induction of germination in fungal spores, Trends Biochem. Sci. 9: 495–497.
    Article CAS Google Scholar
  52. Hightower, L. E., and White, F. P., 1982, Preferential synthesis of rat heat-shock and glucose-regulated proteins in stressed cardiovascular cells, in: Heat Shock (M. J. Schlesinger, M. Ashburner, and A. Tissieres, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 369-377.
    Google Scholar
  53. Hall, B., 1983, Yeast thermotolerance does not require protein synthesis, J. Bacteriol. 156: 1363–1365.
    PubMed CAS Google Scholar
  54. Carlson, N., Rogers, S., and Rechsteiner, M., 1987, Microinjection of ubiquitin: Changes in protein degradation in HeLa cells subjected to heat-shock, J. Cell Biol. 104: 547–555.
    Article PubMed CAS Google Scholar
  55. Rose, I. A., and Warms, J. V. B., 1987, A specific endpoint assay for ubiquitin, Proc. Natl. Acad. Sci. U.S.A. 84: 1477–1481.
    Article PubMed CAS Google Scholar
  56. Munro, S., and Pelham, H. R. B., 1984, Use of peptide tagging to detect proteins expressed from cloned genes: Deletion mapping functional domains from Drosophila hsp70, EMBO J. 3: 3087–3093.
    PubMed CAS Google Scholar
  57. Brugge, J., Yonemoto, W., and Darrow, D., 1983, Interaction between the Rous sarcoma virus transforming protein and two cellular phosphoproteins: Analysis of the turnover and distribution of this complex, Mol. Cell. Biol. 3: 9–19.
    PubMed CAS Google Scholar
  58. Catelli, M. G., Binart, N., Jung-Testas, I., Renoir, J. M., Baulieu, E. E., Feramisco, J. R., and Welch, W. J., 1985, The common 90-kd protein component of non-transformed “8S” steroid receptors is a heat-shock protein, EMBO J. 4: 3131–3135.
    PubMed CAS Google Scholar
  59. Lewis, M. J., and Pelham, H. R. B., 1985, Involvement of ATP in the nuclear and nucleolar functions of the 70 kd heat shock protein, EMBO J. 4: 3137–3143.
    PubMed CAS Google Scholar
  60. Ungewickell, E., 1985, The 70-kd mammalian heat shock proteins are structurally and functionally related to the uncoating protein that releases clathrin triskelia from coated vesicles, EMBO J. 4: 3385–3391.
    PubMed CAS Google Scholar
  61. Chappell, T. G., Welch, W. J., Schlossman, D. M., Palter, K. B., Schlesinger, M. J., and Rothman, J. E., 1986, Uncoating ATPase is a member of the 70 kilodalton family of stress proteins, Cell 45: 3–13.
    Article PubMed CAS Google Scholar
  62. Pelham, H. R. B., 1985, Speculations on the functions of the major heat shock and glucose-regulated proteins, Cell 46: 959–961.
    Article Google Scholar
  63. Munro, S., and Pelham, H. R. B., 1986, An hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein, Cell 46: 291–300.
    Article PubMed CAS Google Scholar
  64. Gething, M. M., McCammon, K., and Sambrook, J., 1986, Expression of wild-type and mutant forms of influenza hemagglutinin: The role of folding in intracellular transport, Cell 46: 939–950.
    Article PubMed CAS Google Scholar
  65. Goff, S. A., and Goldberg, A. L., 1985, Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes, Cell 41: 587–595.
    Article PubMed CAS Google Scholar
  66. Ecker, D. J., Khan, M. I., Marsh, J., Butt, T., and Crooke, S. T., 1987, Chemical synthesis and expression of a cassette adapted ubiquitin gene, J. Biol. Chem. 262: 3524–3527.
    PubMed CAS Google Scholar
  67. Hershko, A., and Cienchanover, A., 1986, The ubiquitin pathway for the degradation of intracellular proteins, Prog. Nucleic Acids Res. Mol. Biol. 33: 19–56.
    Article CAS Google Scholar
  68. Rechsteiner, M., 1987, Ubiquitin-mediated pathways for intracellular proteolysis, Annu. Rev. Cell. Biol. 3: 1–30.
    Article PubMed CAS Google Scholar
  69. Hershko, A., Heller, H., Elias, S., and Ciechanover, A., 1983, Components of ubiquitinprotein ligase system. J. Biol. Chem. 258: 8206–8214.
    PubMed CAS Google Scholar
  70. Pickart, C. M., and Rose, I. A., 1985, Functional heterogeneity of ubiquitin carrier proteins, J. Biol. Chem. 260: 1573–1581.
    PubMed CAS Google Scholar
  71. Hershko, A., Heller, H., Eytan, E., and Reiss, Y., 1986, The protein substrate binding site of the ubiquitin-protein ligase system, J. Biol. Chem. 261: 11992–11999.
    PubMed CAS Google Scholar
  72. Reynolds, P., Weber, S., and Prakash, L., 1985, RAD6 gene of Saccharomyces cerevisiae encodes a protein containing a tract of 13 consecutive aspartates, Proc. Natl. Acad. Sci. U.S.A. 82: 168–172.
    Article PubMed CAS Google Scholar
  73. Prakash, L., Polakowski, R., Reynolds, P., and Weber, S., 1983, Molecular cloning and preliminary characterization of the RAD6 gene of the yeast Saccharomyces cerevisiae, in: Cellular Responses to DNA Damage (E. C. Friedberg and B. A. Bridges, eds.), Alan R. Liss, New York, pp. 559–568.
    Google Scholar
  74. Lawrence, C. W., 1982, Mutagenesis in Saccharomyces cerevisiae, Adv. Genet. 21: 173–254.
    Article PubMed CAS Google Scholar
  75. Haynes, R. H., and Kunz, B. A., 1981, DNA repair and mutagenesis in yeast, in: The Molecular Biology of the Yeast Saccharomyces cerevisiae: Life Cycle and Inheritance (J. Strathern, E. Jones, and J. Broach, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., pp. 371–414.
    Google Scholar
  76. Tuite, M. F., and Cox, B. S., 1981, RAD6 gene of Saccharomyces cerevisiae codes for two mutationally separable deoxyribonucleic acid repair functions, Mol. Cell. Biol. 1: 153–157.
    PubMed CAS Google Scholar
  77. Crame, J. C., and Mortimer, R. K., 1974, A genetic study of X-ray sensitive mutants in yeast, Mutat. Res. 24: 281–292.
    Article Google Scholar
  78. Montelone, B. A., Prakash, S., and Prakash, L., 1981, Recombination and mutagenesis in rad6 mutants of Saccharomyces cerevisiae: Evidence for multiple functions of the RAD6 gene, Mol. Gen. Genet. 184: 410–415.
    Article PubMed CAS Google Scholar
  79. Friedberg, E. C., 1983, in: DNA Repair, W. H. Freeman, San Francisco, CA, pp. 506–525.
    Google Scholar
  80. Fujiwara, Y., and Kano, Y., 1983, Characteristics of thymine dimer excision from xeroderma pigmentosum chromatin, in: Cellular Responses to DNA Damage (E. C. Friedberg and B. A. Bridges, eds.), Alan R. Liss, New York, pp. 215–224.
    Google Scholar
  81. Mellon, I., Bohr, V. A., Smith, C. A., and Hanawalt, P. C., 1986, Preferential DNA repair of an active gene in human cells, Proc. Natl. Acad. Sci. U.S.A. 83: 8878–8882.
    Article PubMed CAS Google Scholar
  82. Hanawalt, P. C., and Sarasin, A., 1976, Cancer-prone hereditary diseases with DNA processing abnormalities, Trends Genet. 2: 124–129.
    Article Google Scholar

Download references