The search for the right partner: Homologous pairing and DNA strand exchange proteins in eukaryotes (original) (raw)
References
Aboussekhra, A., Chanet, R., Adjiri, A., and Fabre, F., Semidominant suppressors of Srs2 helicase mutations of_Saccharomyces cerevisiae_ map in the_RAD51_ gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Molec. cell. Biol.12 (1992) 3224–3234. CASPubMedPubMed Central Google Scholar
Arai, N., Kawasaki, K., and Shibata, T., A multi-component protein of a fission yeast which promotes joint molecule formation from homologous DNAs. J. biol. Chem.267 (1992) 3514–3522. ArticleCASPubMed Google Scholar
Bähler, J., Hagens, G., Holzinger, G., Scherthan, H., and Heyer, W.-D.,Saccharomyces cerevisiae cells lacking the homologous pairing protein p175_SEP1_ arrest at pachytene during meiotic prophase. Chromosoma. In press.
Basile, G., Aker, M., and Mortimer, R. K., Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene_RAD51_. Molec. cell. Biol.12 (1992) 3235–3246. CASPubMedPubMed Central Google Scholar
Bezzubova, O., Shinohara, A., Mueller, R. G., Ogawa, H., and Buerstedde, J.-M., A chicken_RAD51_ homologue is expressed at high levels in lymphoid and reproductive organs. Nucl. Acids Res.21 (1993) 1577–1580. ArticleCASPubMedPubMed Central Google Scholar
Bishop, D. K., Park, D., Xu, L., and Kleckner, N.,DMC1, A meiosis-specific yeast homolog of_E. coli_ recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell_69_ (1992) 439–456. ArticleCASPubMed Google Scholar
Bollag, R. J., Elwood, D. R., Tobin, E. D., Godwin, A. R., and Liskay, R. M., Formation of heteroduplex DNA during mammalian intra-chromosomal gene conversion. Molec. cell. Biol.12 (1992) 1546–1552. CASPubMedPubMed Central Google Scholar
Bortner, C., Hernandez, T. R., Lehman, I. R., and Griffith, J., Herpes simplex virus 1 single-stranded DNA-binding protein (ICP8) will promote homologous pairing and strand transfer. J. molec. Biol.231 (1993) 241–250. ArticleCASPubMed Google Scholar
Cerutti, H., Osman, M., Grandoni, P., and Jagendorf, A. T., A homolog of_Escherichia coli_ RecA protein in plastids of higher plants. Proc. natl Acad. Sci. USA_89_ (1992) 8068–8072. ArticleCASPubMedPubMed Central Google Scholar
Cerutti, H., and Jagendorf, A. T., DNA strand transfer activity in Pea (Pisum sativum L.) chloroplasts. Plant Physiol.102 (1993) 145–153. ArticleCASPubMedPubMed Central Google Scholar
Cerutti, H., Ibrahim, H. Z., and Jagendorf, A. T., Treatment of Pea (Pisum sativum L.) protoplasts with DNA-damaging agents induces a 39-kilodalton chloroplast protein immunologically related to_Escherichia coli_ RecA. Plant Physiol.102 (1993) 155–163. ArticleCASPubMedPubMed Central Google Scholar
Cheng, R., Baker, T. I., Cords, C. E., and Radloff, R. J.,mei-3, a recombination and repair gene of_Neurospora crassa_, encodes a RecA-like protein. Mutation Res.294 (1993) 223–234. ArticleCASPubMed Google Scholar
Clark, A. B., Dykstra, C. C., and Sugino, A., Isolation, DNA sequence, and regulation of a_Saccharomyces cerevisiae_ gene that encodes DNA strand transfer protein α. Molec. cell. Biol.11 (1991) 2576–2582. CASPubMedPubMed Central Google Scholar
Dykstra, C. C., Hamatake, R. K., and Sugino, A., DNA strand transfer protein β from yeast mitotic cells differs from strand transfer protein α from meiotic cells. J. biol. Chem.265 (1990) 10968–10973. ArticleCASPubMed Google Scholar
Dykstra, C. C., Kitada, K., Clark, A. B., Hamatake, R. K., and Sugino, A., Cloning and characterization of DST2, the gene for DNA strand transfer protein β from_Saccharomyces cerevisiae_. Molec. cell. Biol.11 (1991) 2583–2592. CASPubMedPubMed Central Google Scholar
Egelman, E. H., What do X-ray crystallographic and electron microscopic structural studies of the RecA protein tell us about recombination? Curr. Opin. in struct. Biol.3 (1993) 189–197 ArticleCAS Google Scholar
Eggleston, A. K., and Kowalczykowski, S. C., An overview of homologous pairing and DNA strand exchange proteins. Biochimie_73_ (1991) 163–176. ArticleCASPubMed Google Scholar
Fields, S., and Song, O.-K., A novel genetic system to detect protein: protein interactions. Nature_340_ (1989) 245–246. ArticleCASPubMed Google Scholar
Fishel, R. A., Detmer, K., and Rich, A., Identification of homologous pairing and strand-exchange activity from a human tumor cell line based on Z-DNA affinity chromatography. Proc. natl Acad. Sci. USA_85_ (1988) 36–40. ArticleCASPubMedPubMed Central Google Scholar
Fisher, C., Parks, R. J., Lanzon, M. L., and Evans, D. H., Heteroduplex DNA formation is associated with replication and recombination in poxvirus infected cells. Genetics_129_ (1991) 7–18. ArticleCASPubMedPubMed Central Google Scholar
Fotheringham, S., and Holloman, W. K., Extrachromosomal recombination is deranged in the_rec2_ mutant of_Ustilago maydis_. Genetics_129_ (1991) 1053–1060. ArticleCASPubMed Central Google Scholar
Gao, M., and Knipe, D. M., Genetic evidence for multiple nuclear functions of the herpes simplex virus ICP8 DNA binding protein. J. Virol.63 (1989) 5258–5267. ArticleCASPubMedPubMed Central Google Scholar
Goyon, C., and Lichten, M., Timing of molecular events in meiosis in_Saccharomyces cerevisiae_: Stable heteroduplex DNA is formed in meiotic prophase. Molec. cell. Biol.13 (1993) 373–382. CASPubMedPubMed Central Google Scholar
Griffith, J. D., and Harris, L. D., DNA strand exchanges. CRC crit. Rev. Biochem.23 (1988) S43-S86. ArticlePubMed Google Scholar
Gu, L., Huang, S.-M., and Sander, M., Drosophila Rrp1 complements_E. coli xth nfo_ mutants: Protection against both oxidative and alkylation-induced DNA damage. Nucl. Acids Res.21 (1993) 4788–4795. ArticleCASPubMedPubMed Central Google Scholar
Halbrook, J., and McEntee, K., Purification and characterization of a DNA-pairing and strand transfer activity from mitotic_Saacharomyces cerevisiae_. J. biol. Chem.264 (1989) 21403–21412. ArticleCASPubMed Google Scholar
Hall, S. D., Kane, M. F., and Kolodner, R. D., Identification and characterization of the_Escherichia coli_ recT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA. J. Bact.175 (1993) 277–287. ArticleCASPubMedPubMed Central Google Scholar
Heyer, W.-D., and Kolodner, R. D., Enzymology of homologous recombination in_Saccharomyces cerevisiae_. Prog. nucl. Acid Res. molec. Biol.46 (1993) 221–271. ArticleCAS Google Scholar
Hinnebusch, A. G., and Liebman, S. W., Protein synthesis and translational control in_Saccharomyces cerevisiae_, in: The Molecular and Cellular Biology of the Yeast Saccharomyces. Genome Dynamics, Protein Synthesis, and Energetics, pp. 627–735. Eds. J. R. Broach, J. Pringle and E. Jones, CSHL Press, Cold Spring Harbor 1992. Google Scholar
Holden, D. W., Spanos, A., and Banks, G. R., Nucleotide sequence of the_REC1_ gene of_Ustilago maydis_. Nucl. Acids Res.17 (1989) 10489. ArticleCASPubMedPubMed Central Google Scholar
Holliday, R., Altered recombination frequencies in radiation sensitive strains of_Ustilago_. Mutation Res.4 (1967) 275–288. ArticleCASPubMed Google Scholar
Howard-Flanders, P., West, S. C., and Stasiak, A., Role of RecA protein spiral filaments in genetic recombination. Nature_309_ (1984) 215–220. ArticleCASPubMed Google Scholar
Hsieh, P., Meyn, M. S., and Camerini-Otero, R. D., Partial purification and characterization of a recombinase from human cells. Cell_44_ (1986) 885–894. ArticleCASPubMed Google Scholar
Hsu, C. L., and Stevens, A., Yeast cells lacking 5′–3′ exoribonuclease I contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Molec. cell. Biol.13 (1993) 4826–4835. CASPubMedPubMed Central Google Scholar
Huang, K. N., and Symington, L. S., A 5′–3′ exonuclease from_Saccharomyces cerevisiae_ is required for_in vitro_ recombination between linear DNA molecules with overlapping homology. Molec. cell. Biol.13 (1993) 3125–3134. CASPubMedPubMed Central Google Scholar
Johnson, A. W., and Kolodner, R. D., Strand exchange protein I from_Saccharomyces cerevisiae_: a novel multifunctional protein that contains DNA strand exchange and exonuclease activites. J. biol. Chem.266 (1991) 14046–14054. ArticleCASPubMed Google Scholar
Johnson, A. W., and Kolodner, R. D., Characterization of the interaction of_Saccharomyces cerevisiae_ strand exchange protein I with DNA. J. biol. Chem. In press.
Johnson, A. W., and Kolodner, R. D., The activity of the_Saccharomyces cerevisiae_ strand exchange protein 1 intrinsic exonuclease during joint molecule formation. J. biol. Chem. In press.
Kaus, J. A., and Mortimer, R. K., Nucleotide sequence of the_RAD57_ gene of_Saccharomyces cerevisiae_. Gene_105_ (1991) 139–140. Article Google Scholar
Kawasaki, I., Sugano, S., and Ikeda, H., Calf thymus histone H1 is a recombinase that catalyzes ATP-independent DNA strand transfer. Proc. natl Acad. Sci. USA_86_ (1989) 5281–5285. ArticleCASPubMedPubMed Central Google Scholar
Kawasaki, I., Sugano, S., and Ikeda, H., Calf thymus histone H1 is a recombinase that catalyzes ATP-independent DNA strand transfer. Proc. natl Acad. Sci. USA_87_ (1989) 6128. Google Scholar
Kearsey, S., and Kipling, D., Recombination and RNA processing: a common strand? T Cell Biol.1 (1991) 110–112. ArticleCAS Google Scholar
Kim, J., Genes controlling conjugation and mitotic cell division in yeast_Saccharomyces cerevisiae_. Ph. D. thesis (1988) Massachusetts Institute of Technology.
Kim, J., Ljungdahl, P. O., and Fink, G. R.,kem mutations affect nuclear fusion in_Saccharomyces cerevisiae_. Genetics_126_ (1990) 799–812. ArticleCASPubMedPubMed Central Google Scholar
Kipling, D., and Kearsey, S. E., TFIIS and strand-transfer proteins. Nature_353_ (1991) 509. ArticleCASPubMed Google Scholar
Kleckner, N., Padmore, R., and Bishop, D. K., Meiotic chromosome metabolism: one view. Cold Spring Harb. Symp. quant. Biol.56 (1991) 729–743. ArticleCASPubMed Google Scholar
Kmiec, E., and Holloman, W. K., Homologous pairing of DNA molecules promoted by a protein from_Ustilago_. Cell_29_ (1982) 367–374. ArticleCASPubMed Google Scholar
Kobayashi, T., Hotta, Y., and Tabata, S., Isolation and characterization of a yeast gene that is homologous with a meiosisspecific cDNA from a plant. Molec. gen. Genet.237 (1993) 225–232. ArticleCASPubMed Google Scholar
Kolodner, R., Evans, D. H., and Morrison, P. T., Purification and characterization of an activity from_Saccharomyces cerevisiae_ that catalyzes homologous pairing and strand exchange. Proc. natl Acad. Sci. USA_84_ (1987) 5560–5564. ArticleCASPubMedPubMed Central Google Scholar
Kowalczykowski, S. C., Biochemistry of genetic recombination: Energetics and mechanism of DNA strand exchange. A. Rev. Biophys. biophys. Chem.20 (1991) 539–575. ArticleCAS Google Scholar
Lovett, S., and Mortimer, R. K., Characterization of null mutants of the_rad55_ gene of_Saccharomyces cerevisiae_: effects of temperature, osmotic strength, and mating type. Genetics_116_ (1987) 547–533. ArticleCASPubMedPubMed Central Google Scholar
Lovett, S. T., Sequence of the RAD55 gene of_Saccharomyces cerevisiae_: similarity of RAD55 to prokaryotic RecA and other RecA-like proteins. Gene. In press.
Lowenhaupt, K., Sander, M., Hauser, C., and Rich, A., Drosophila melanogaster strand transferase. J. biol. Chem.264 (1989) 20568–20575. ArticleCASPubMed Google Scholar
McCarthy, J. G., Sander, M., Lowenhaupt, K., and Rich, A., Sensitive homologous recombination strand transfer assay: Partial purification of a_Drosophila melanogaster_ enzyme and detection of sequence effects on the strand transfer activity of RecA protein. Proc. natl Acad. Sci. USA_85_ (1988) 5854–5858. ArticleCASPubMedPubMed Central Google Scholar
Milne, G. T., and Weaver, D. T., Dominant negative alleles of_RAD52_ reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev.7 (1993) 1755–1765. ArticleCASPubMed Google Scholar
Moore, S. P., and Fishel, R., Purification and characterization of a protein from human cells which promotes homologous pairing of DNA. J. biol. Chem.265 (1990) 11108–11117. ArticleCASPubMed Google Scholar
Moore, S. P., Erdile, L., Kelly, T., and Fishel, R., The human homologous pairing protein HPP-1 is specifically stimulated by the cognate single-stranded binding protein hRP-A. Proc. natl Acad. Sci. USA_88_ (1991) 9067–9071. ArticleCASPubMedPubMed Central Google Scholar
Morita, T., Yoshimura, Y., Yamamoto, A., Murata, K., Mori, M., Yamamoto, H., and Matsuhiro, A., A mouse homolog of the_Escherichia coli recA_ and_Saccharomyces cerevisiae Rad51_ genes. Proc. natl Acad. Sci. USA_90_ (1993) 6577–6580. ArticleCASPubMedPubMed Central Google Scholar
Morrison, D. P., and Hastings, P. J., Characterization of the mutator mutation_mut 5-1_. Molec. gen. Genet.175 (1979) 57–65. ArticleCASPubMed Google Scholar
Muris, D. F. R., Vreken, K., Carr, A. M., Broughton, B. C., Lehmann, A. R., Lohman, P. H. M., and Pastink, A., Cloning of_RAD51_ homolog of_Schizosaccharomyces pombe_. Nucl. Acids Res.21 (1993) 4586–4591. ArticleCASPubMedPubMed Central Google Scholar
Nag, D. K., and Petes, T. D., Physical detection of heteroduplexes during meiotic recombination in the yeast_Saccharomyces cerevisiae_. Molec. cell. Biol.13 (1993) 2324–2331. CASPubMedPubMed Central Google Scholar
Nugent, M., Huang, S.-M., and Sander, M., Characterization of the apurinic endonuclease activity of Drosophila Rrpl. Biochemistry_32_ (1993) 11445–11452. ArticleCASPubMed Google Scholar
Ogawa, T., Shinohara, A., Ogawa, H., and Tomizawa, J., Functional structure of the RecA protein found by chimera analysis. J. molec. Biol.226 (1992) 651–660. ArticleCASPubMed Google Scholar
Ogawa, T., Yu, X., Shinohara, A., and Egelman, E. H., Similarity of the yeast Rad51 filament to the bacterial RecA filament. Science_259_ (1993) 1896–1899. ArticleCASPubMed Google Scholar
Ogawa, T., Shinohara, A., Nabetani, A., Ikeya, T., Yu, X., Egelman, E. H., and Ogawa, H., RecA-like recombination proteins in Eukaryotes: functions of_Rad51_ and_Rad52_ genes of_Saccharomyces cerevisiae_. Cold Spring Harb. Symp. quant. Biol. In press.
Pang, Q., Hays, J. B., and Rajagopal, I., A plant cDNA that partially complements_Escherichia coli_ recA mutations predicts a polypeptide not strongly homologous to RecA proteins. Proc. natl Acad. Sci. USA_89_ (1992) 8073–8077. ArticleCASPubMedPubMed Central Google Scholar
Panyutin, I. G., and Hsieh, P., Formation of a single base mismatch impedes spontaneous DNA branch migration. J. molec. Biol.230 (1993) 413–424. ArticleCASPubMed Google Scholar
Petes, T. D., Malone, R. E., and Symington, L. S., Recombination in Yeast. In: The Molecular and Cellular Biology of the Yeast Saccharomyces. Genome Dynamics, Protein Synthesis, and Energetics. pp. 407–521. Eds J. R. Broach, J. Pringle, E. Jones. CSHL Press, Cold Spring Harbor 1992. Google Scholar
Radding, C. M., Helical interactions in homologous pairing and strand exchange driven by RecA protein. J. biol. Chem.266 (1991) 5355–5358. ArticleCASPubMed Google Scholar
Roca, A. I., and Cox, M. M., The RecA protein: Structure and function. CRC crit. Rev.25 (1990) 415–456. ArticleCAS Google Scholar
Saeki, T., Machida, I., and Nakai, S., Genetic control of diploid recovery after γ-irradiation in the yeast_Saccharomyces cerevisiae_. Mutation Res.73 (1980) 251–265. ArticleCASPubMed Google Scholar
Sander, M., Lowenhaupt, K., Lane, W. S., and Rich, A., Cloning and characterization of Rrpl, the gene encoding Drosophila strand transferase: carboxy-terminal homology to DNA repair endo/exonucleases. Nucl. Acids Res.19 (1991) 4523–4529. ArticleCASPubMedPubMed Central Google Scholar
Sander, M., Lowenhaupt, K., and Rich, A., Drosophila Rrpl protein: An apurinic endonuclease with homologous recombination activities. Proc. natl Acad. Sci. USA_88_ (1991) 6780–6784. ArticleCASPubMedPubMed Central Google Scholar
Shinohara, A., Ogawa, H., and Ogawa, T., Rad51 protein involved in repair and recombination in_S. cerevisiae_ is a RecA-like protein. Cell_69_ (1992) 457–470. ArticleCASPubMed Google Scholar
Shinohara, A., Ogawa, H., Hatsuda, Y., Ushio, N., Ikeo, K., and Ogawa, T., Cloning of human, mouse and fission yeast recombination genes homologous to Rad51 and recA. Nature Genet.4 (1993) 239–243. ArticleCASPubMed Google Scholar
Shuster, E. O., and Byers, B., Pachytene arrest and other meiotic effects of the Start mutations in_Saccharomyces cerevisiae_. Genetics_123_ (1989) 29–43. ArticleCASPubMedPubMed Central Google Scholar
Sikorav, J.-L., and Church, G. M., Complementary recognition in condensed DNA: accelerated DNA renaturation. J. molec. Biol.222 (1991) 1085–1108. ArticleCASPubMed Google Scholar
Silberstein, Z., Shalit, M., and Cohen, A., Heteroduplex strand-specificity in restriction-stimulated recombination by the RecE pathway of_Escherichia coli_. Genetics_133_ (1993) 439–448. ArticleCASPubMedPubMed Central Google Scholar
Stasiak, A., Three-stranded DNA structure: is this thesecret of DNA homologous recognition? Molec. Microbiol.6 (1992) 3267–3276. ArticleCAS Google Scholar
Stevens, A., and Maupin, M. K., A 5′−3′ exoribonuclease of_Saccharomyces cerevisiae_: size and novel substrate specificity. Archs Biochem. Biophys.252 (1987) 339–347. ArticleCAS Google Scholar
Story, R. M., Weber, I. T., and Steitz, T. A., The structure of the_E. coli_ recA protein monomer and polymer. Nature_355_ (1992) 318–325. ArticleCASPubMed Google Scholar
Story, R. M., and Steitz, T. A., Structure of the recA protein-ADP complex. Nature_355_ (1992) 374–376. ArticleCASPubMed Google Scholar
Story, R. M., Bishop, D. K., Kleckner, N., and Steitz T. A., Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast. Science_259_ (1993) 1892–1896. ArticleCASPubMed Google Scholar
Sugino, A., Nitiss, J., and Resnick, M. A., ATP-independent DNA strand transfer catalyzed by protein(s) from meiotic cells of the yeast_Saccharomyces cerevisiae_. Proc. natl Acad. Sci. USA_85_ (1988) 3683–3687. ArticleCASPubMedPubMed Central Google Scholar
Svaren, J., Inagami, K., Lovegren, E., and Chalkley, R., DNA denatures upon drying after ethanol precipitation. Nucl. Acids Res.15 (1987) 8739–8754. ArticleCASPubMedPubMed Central Google Scholar
Szankasi, P., and Smith, G. R., A single-stranded DNA exonuclease from_Schizosaccharomyces pombe_. Biochemistry_31_ (1992) 6769–6773. ArticleCASPubMed Google Scholar
Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, F. W., The double-strand-break repair model for recombination. Cell_33_ (1983) 25–35. ArticleCASPubMed Google Scholar
Tartof, K. D., and Henikoff, S., Trans-sensing effects from Drosophila to humans. Cell_65_ (1991) 201–203. ArticleCASPubMed Google Scholar
Tishkoff, D., Johnson, A. W., and Kolodner, R. D., Molecular and genetic analysis of the gene encoding the_Saccharomyces cerevisiae_ strand exchange protein SEP1. Molec. cell. Biol.11 (1991) 2593–2608. CASPubMedPubMed Central Google Scholar
Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J., Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and the other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J.1 (1982) 945–951. ArticleCASPubMedPubMed Central Google Scholar
West, S. C., Enzymes and molecular mechanisms of genetic recombination. A. Rev. Biochem.61 (1992) 603–640. ArticleCAS Google Scholar
Zhang, W., and Evans, D. H., DNA strand exchange catalyzed by proteins from vaccinia virus-infected cells. J. Virol.67 (1993) 204–212. ArticleCASPubMedPubMed Central Google Scholar
Yoshimura, Y., Morita, T., Yamamoto, A., and Matsuhiro, A., Cloning sequence of the human RecA-like gene cDNA. Nucl. Acids Res.21 (1993) 1665. ArticleCASPubMedPubMed Central Google Scholar