The Molecular Mechanism of the Insulin-mimetic/sensitizing Activity of the Antidiabetic Sulfonylurea Drug Amaryl (original) (raw)
Lebovitz HE. (1990) Oral hypoglycemic agents. In: Rifkin H, Porte D. (eds.) Ellenberg and Rifkin’s Diabetes mellitus. Theory and Practise. Elsevier, New York, pp. 554–574. Google Scholar
Ashcroft SJH, Ashcroft FM. (1992) The sulfonylurea receptor. Biochim. Biophys. Acta1175: 45–59. ArticlePubMedCAS Google Scholar
Aguilar-Bryan L, Bryan J. (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev.20: 101–135. PubMedCAS Google Scholar
Tabuchi H, Yamamoto H, Matsumoto K, et al. (2000) Regulation of insulin secretion by overexpression of Ca2+/calmodulin-dependent protein kinase II in insulinoma MIN6 cells. Endocrinology141: 2350–2360. ArticlePubMedCAS Google Scholar
Easom RA. (1999) CaM kinase II: a protein kinase with extraordinary talents germane to insulin exocytosis. Diabetes48: 675–684. ArticlePubMedCAS Google Scholar
Popoli M. (1993) Synaptotagmin is endogenously phosphorylated by Ca2+/calmodulin protein kinase II in synaptic vesicles. FEBS Lett.317: 85–88. ArticlePubMedCAS Google Scholar
Matsumoto K, Ebihara K, Yamamoto H, et al. (1999) Cloning from insulinoma cells of synapsin I associated with insulin secretory granules. J. Biol. Chem.274: 2053–2059. ArticlePubMedCAS Google Scholar
Mshlig M, Wolter S, Mayer P, et al. (1997) Insulinoma cells contain an isoform of Ca2+/calmodulin-dependent protein kinase IIδ associated with insulin secretion vesicles. Endocrinology138: 2577–2584. Article Google Scholar
Skeer JM, Degano P, Coles B, Potier M, Ashcroft FM, Ashcroft SJH. (1994) Determination of the molecular mass of the native beta-cell sulfonylurea receptor. FEBS Lett.338: 98–102. ArticlePubMedCAS Google Scholar
Bryan J, Aguilar-Bryan L. (1999) Sulfonylurea receptors: ABC transporters that regulate ATP-sensitive K+ channels. Biochim. Biophys. Acta1461: 285–303. ArticlePubMedCAS Google Scholar
Clement IV JP, Kunjilwar K, Gonzalez G, et al. (1997) Association and stoichiometry of KATP channel subunits. Neuron18: 827–838. ArticlePubMedCAS Google Scholar
Bryan LA, Nichols CG, Wechsler SW, et al. (1995) Cloning of the β cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science268: 423–426. ArticlePubMed Google Scholar
Inagaki N, Gonoi T, Clement JP, et al. (1996) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science270: 1167–1170. Google Scholar
Ueda K, Komine J, Matsuo M, Seino S, Amachi T. (1999) Cooperative binding of ATP and MgADP in the sulfonylurea receptor is modulated by glibenclamide. Proc. Natl. Acad. Sci. USA96: 1268–1272. ArticlePubMedCASPubMed Central Google Scholar
Babenko AP, Aguilar-Bryan L, Bryan J. (1998) A view of SUR/KIR6.X, KATP channels. Annu. Rev. Physiol.60: 667–687. ArticlePubMedCAS Google Scholar
Ashfield R, Gribble FM, Ashcroft SJ, Ashcroft FM. (1999) Identification of the high-affinity tolbutamide site on the SUR1 subunit of the K(ATP) channel. Diabetes48: 1341–1347. ArticlePubMedCAS Google Scholar
Babenko AP, Gonzalez G, Bryan J. (1999) The tolbutamide site of SUR1 and a mechanism for its functional coupling to KATP channel closure. FEBS Lett.459: 367–376. ArticlePubMedCAS Google Scholar
Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J. (1998) Toward understanding the assembly and structure of KATP channels. Physiol. Rev.78: 227–245. ArticlePubMedCAS Google Scholar
Uhde I, Toman A, Gross I, Schwanstecher C, Schwanstecher M. (1999) Identification of the potassium channel opener site on sulfonylurea receptors. J. Biol. Chem.274: 28079–28082. ArticlePubMedCAS Google Scholar
Thomas PM, Cote GJ, Wohlik N, et al. (1995) Mutations in the sulfonylurea receptor gene in familial hyperinsulinemic hypoglycemia of infancy. Science268: 426–429. ArticlePubMedCAS Google Scholar
Thomas P, Ye Y, Lightner E. (1996) Mutations of the pancreatic islet inward rectifier also lead to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum. Mol. Gen.5: 1809–1812. ArticlePubMedCAS Google Scholar
Kane C, Shepherd RM, Squires PE, et al. (1996) Loss of functional KATP channels in pancreatic β cells causes persistent hyperinsulinemic hypoglycemia of infancy. Nature Med.2: 1344–1347. ArticlePubMedCAS Google Scholar
Gribble FM, Tucker SJ, Ashcroft FM. (1997) The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by MgADP and diazoxide. EMBO J.16: 1145–1152. ArticlePubMedPubMed CentralCAS Google Scholar
Nichols CG, Shyng S-L, Nestorowicz A. (1996) Adenosine diphosphate as an intracellular regulator of insulin secretion. Science272: 1785–1787. ArticlePubMedCAS Google Scholar
Shyng S-L, Ferrigni T, Sheppard JB. (1998) Functional analysis of novel mutations in the sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy. Diabetes47: 1145–1151. ArticlePubMedCAS Google Scholar
Müller G, Hartz D, Pünter J, Ökonomopulos R, Kramer W. (1994) Differential interaction of glimepiride and glibenclamide with the _β_-cell sulfonylurea receptor: I. Binding characteristics. Biochim. Biophys. Acta1191: 267–277. ArticlePubMed Google Scholar
Kramer W, Müller G, Girbig F, et al. (1995) The molecular interaction of sulfonylureas with _β_-cell ATP-sensitive K+-channels. Diabetes Res. Clin. Pract.28(Suppl.): S67–S80. ArticlePubMedCAS Google Scholar
Kramer W, Müller G, Girbig F, et al. (1994) Differential interaction of glimepiride and glibenclamide with the _β_-cell sulfonylurea receptor: II. Photoaffinity labeling of a 65-kDa protein with [3H]glimepiride. Biochim. Biophys. Acta1191: 278–290. ArticlePubMedCAS Google Scholar
Kramer W, Geisen K, Müller G. (1996) Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at pancreatic _β_-cells. Horm. Metab. Res.28: 464–468. ArticlePubMedCAS Google Scholar
Kramer W, Ökonomopulos R, Pünter J, Summ H-D. (1988) Direct photoaffinity labeling of the putative sulfonylurea receptor in rat _β_-cell tumor membranes by [3H]glibenclamide FEBS Lett.229: 355–359. ArticlePubMedCAS Google Scholar
Ashcroft FM. (1996) Mechanisms of the glycaemic effects of sulfonylureas. Horm. Metab. Res.28: 456–463. ArticlePubMedCAS Google Scholar
Ashcroft FM, Gribble FM. (1999) ATP-sensitive K+ channels and insulin secretion: their role in health and disease. Diabetologia42: 903–919. ArticlePubMedCAS Google Scholar
Langtry HD, Balfour JA. (1998) Glimepiride—a review of its pharmacological and clinical efficacy in the management of type 2 diabetes mellitus. Drugs55: 563–584. ArticlePubMedCAS Google Scholar
Tsumura K. (1995) Clinical evaluation of glimepiride (HOE490) in NIDDM, including a double blind comparative study versus gliclazide. Diabetes Res. Clin. Pract.28: S147–S149. ArticlePubMedCAS Google Scholar
Dills DG, Schneider J, Glimepiride/Glyburide Research Group. (1996) Clinical evaluation of glimepiride versus glyburide in NIDDM in a double-blind comparative study. Horm. Metab. Res.28: 426–429. ArticlePubMedCAS Google Scholar
Draeger KE, Wernicke-Panten K, Lomp HJ. (1996) Long-term treatment of type 2 diabetic patients with a new oral anti-diabetic agent glimepiride (Amaryl): a double-blind comparison with glibenclamide. Horm. Metab. Res.28: 419–425. ArticlePubMedCAS Google Scholar
Müller G, Satoh Y, Geisen K. (1995) Extrapancreatic effects of sulfonylureas — a comparison between glimepiride and conventional sulfonylureas. Diabetes Res. Clin. Pract.28(Suppl.): S115–S137. ArticlePubMed Google Scholar
Müller G, Geisen K. (1996) Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at adipocytes. Horm. Metab. Res.28: 469–487. ArticlePubMed Google Scholar
Geisen K. (1988) Special pharmacology of the new sulfonylurea glimepiride. Drug. Res.38: 1120–1130. CAS Google Scholar
Müller G, Wied S, Wetekam E-M, Crecelius A, Unkelbach A, Pünter J. (1994) Stimulation of glucose utilization in 3T3 adipocytes and rat diaphragm in vitro by the sulfonylureas, glimepiride and glibenclamide, is correlated with modulations of the cAMP regulatory cascade. Biochem. Pharmacol.48: 985–996. ArticlePubMed Google Scholar
Davidson MB, Molnar G, Furman A, Yamaguchi D. (1991) Glyburide-stimulated glucose transport in cultured muscle cells via protein kinase C-mediated pathway requiring new protein synthesis. Diabetes40: 1531–1538. ArticlePubMedCAS Google Scholar
Rogers BJ, Standaert ML, Pollet RJ. (1987) Direct effects of sulfonylurea agents on glucose transport BC3H-1 myocyte. Diabetes36: 1292–1296. ArticlePubMedCAS Google Scholar
Bak JF, Schmitz O, Sorensen NS, Pedersen O. (1989) Post-receptor effects of sulfonylurea on skeletal muscle glycogen synthase activity in type II diabetic patients. Diabetes38: 1343–1350. ArticlePubMedCAS Google Scholar
Jacobs DB, Jung CY. (1985) Sulfonylurea potentiates insulin-induced recruitment of glucose transport carrier in rat adipocytes. J. Biol. Chem.260: 2593–2596. PubMedCAS Google Scholar
Altan N, ALtan VM, Mikolay L, Larner J, Schwartz CFW. (1985) Insulin-like and insulin-enhancing effects of the sulfonylurea glyburide on rat adipose glycogen synthase. Diabetes34: 281–286. ArticlePubMedCAS Google Scholar
Jacobs DB, Jung CY. (1985) Sulfonylurea potentiates insulin-induced recruitment of glucose transport carrier in rat adipocytes. J. Biol. Chem.260: 2593–2596. PubMedCAS Google Scholar
Martz A, Jo I, Jung CY. (1988) Sulfonylurea binding to adipocyte membrane and potentiation of insulin stimulated hexose transport. J. Biol. Chem.264: 13672–13678. Google Scholar
Müller G, Wied S. (1993) The sulfonylurea drug, glimepiride, stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin-resistant rat adipocytes in vitro. Diabetes42: 1852–1867. ArticlePubMed Google Scholar
Pessin JE, Thurmond DC, Elmendorf JS, Coker KJ, Okada S. (1999) Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. J. Biol. Chem.274: 2593–2596. ArticlePubMedCAS Google Scholar
Holman GD, Kasuga M. (1997) From receptor to transporter: insulin signalling to glucose transport. Diabetologia40: 991–1003. ArticlePubMedCAS Google Scholar
Czech MP, Corvera S. (1999) Signaling mechanisms that regulate glucose transport. J. Biol. Chem.274: 1865–1868. ArticlePubMedCAS Google Scholar
Bähr M, v. Holtey M, Müller G, Eckel J. (1995) Direct stimulation of myocardial glucose transport and glucose transporter (Glut1) and Glut4 protein expression by the sulfonylurea glimepiride. Endocrinology136: 2547–2553. ArticlePubMed Google Scholar
Eckel J. (1996) Direct effects of glimepiride on protein expression of cardiac glucose transporters. Horm. Metab. Res.28: 508–511 ArticlePubMedCAS Google Scholar
Gustafson TA, Moodie SA, Lavan BE. (1999) The insulin receptor and metabolic signaling. In: Blaustein, Greger, Grunicke, et al (eds.) Reviews in Physiology, Biochemistry and Pharmacology, vol. 137. Springer, Berlin, pp. 71–192. Google Scholar
White MF. (1997) The insulin signalling system and the IRS proteins. Diabetologia40: S2–S17. ArticlePubMedCAS Google Scholar
White MF. (1998) The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol. Cell. Biochem.182: 3–11. ArticlePubMedCAS Google Scholar
Coffer PJ, Jin J, Woodgett JR. (1998) Protein kinase B (c-Akt): a multifunctional mediator of phosphatidyl 3-kinase activation. Biochem. J.335: 1–13. ArticlePubMedPubMed CentralCAS Google Scholar
Cohen P, Alessi DR, Cross DAE. (1997) PDK1, one of the missing links in insulin signal transduction? FEBS Lett.410: 3–10. ArticlePubMedCAS Google Scholar
White MF. (1998) The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol. Cell. Biochem.182: 3–11. ArticlePubMedCAS Google Scholar
Shepherd PR, Withers DJ, Siddle K. (1998) Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J.333: 471–490. ArticlePubMedPubMed CentralCAS Google Scholar
Nystrom FH, Quon MJ. (1999) Insulin signalling: Metabolic pathways and mechanisms for specificity. Cell. Signal.11: 563–574. ArticlePubMedCAS Google Scholar
Araki E, Lipes MA, Patti ME, et al. (1994) Alternative pathway of insulin signaling in mice with targeted disruption of the IRS-1 gene. Nature372: 186–190. ArticlePubMedCAS Google Scholar
Tamemoto H, Kadowaki T, Tobe K, et al. (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature372: 182–186. ArticlePubMedCAS Google Scholar
Withers DJ, Gutierrez JS, Towery H, et al. (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature391: 900–904. ArticlePubMedCAS Google Scholar
Lavan BE, Fantin VR, Chang ET, Lane WS, Keller SR, Lienhard GE. (1997) A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family. J. Biol. Chem.272: 21403–21407. ArticlePubMedCAS Google Scholar
Liu SCH, Wang Q, Lienhard GE, Keller SR. (1999) Insulin receptor substrate 3 is not essential for growth or glucose homeostasis. J. Biol. Chem.274: 18093–18099. ArticlePubMedCAS Google Scholar
Takada Y, Takata Y, Iwanishi M, et al. (1996) Effect of glimepiride (HOE490) on insulin receptors of skeletal muscles from genetically diabetic KK-Ay mouse. Eur. J. Pharmacol.308: 205–210. ArticlePubMedCAS Google Scholar
Nosjean O, Briolay A, Roux B. (1997) Mammalian GPI proteins: sorting, membrane residence and functions. Biochim. Biophys. Acta1331: 153–186. ArticlePubMedCAS Google Scholar
Müller G, Wetekam E-A, Jung C, Bandlow W. (1994) Membrane association of lipoprotein lipase and a cAMP-binding ectoprotein in rat adipocytes. Biochemistry33: 12149–12159. ArticlePubMed Google Scholar
Müller G, Dearey E-A, Pünter J. (1993) The sulfonylurea drug, glimepiride, stimulates release of glycosyl-phosphatidylinositolanchored plasma membrane proteins from 3T3 adipocytes. Biochem. J.289: 509–521. ArticlePubMedPubMed Central Google Scholar
Saltiel AR, Fox JA, Sherline P, Cuatrecasas P. (1986) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Science233: 967–972. ArticlePubMedCAS Google Scholar
Romero GL, Luttrell L, Rogol A, Zeller K, Hewlett E, Larner J. (1988) Phosphatidylinositol-glycan anchors of membrane proteins: potential precursors of insulin mediators. Science240: 509–511. ArticlePubMedCAS Google Scholar
Müller G, Dearey E-A, Korndörfer A, Bandlow W. (1994) Stimulation of a glycosyl-phosphatidylinositol-specific phospholipase by insulin and the sulfonylurea, glimepiride, in rat adipocytes depends on increased glucose transport. J. Cell Biol.126: 1267–1276. ArticlePubMed Google Scholar
Movahedi S, Hooper N. (1997) Insulin stimulates the release of the glycosyl phosphatidylinositol-anchored membrane dipeptidase from 3T3-L1 adipocytes through the action of a phospholipase C. Biochem. J.326: 531–537. ArticlePubMedPubMed CentralCAS Google Scholar
Lisanti MP, Scherer PE, Tang ZL, Sargiacomo M. (1994) Caveolae, caveolin and caveolin-rich membrane domains: A signaling hypothesis. Trends Cell Biol.4: 231–235. ArticlePubMedCAS Google Scholar
Rothberg KG, Henser JE, Donzell WC, Ying Y-S, Glenney JR, Anderson RGW. (1992) Caveolin, a protein component of caveolae membrane coats. Cell68: 673–682. ArticlePubMedCAS Google Scholar
Kurzchalia TV, Dupree P, Monier S. (1994) VIP-21 Caveolin, a protein of the trans-Golgi network and caveolae. FEBS Lett.346: 88–91. ArticlePubMedCAS Google Scholar
Das K, Lewis RY, Scherer PE, Lisanti MP. (1999) The membrane-spanning domains of caveolins-1 and -2 mediate the formation of caveolin hetero-oligomers. J. Biol. Chem.274: 18721–18728. ArticlePubMedCAS Google Scholar
Sargiacomo M, Scherer PE, Tang Z, Kübler E, Song KS, Sanders MC. (1995) Oligomeric structure of caveolin: Implications for caveolae membrane organizations. Proc. Natl. Acad. Sci. USA92: 9407–9411. ArticlePubMedCASPubMed Central Google Scholar
Brown DA, London E. (1997) Breakthroughs and views. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem. Biophys. Res. Commun.240: 1–7. ArticlePubMedCAS Google Scholar
Okamoto T, Schlegel A, Scherer PE, Lisanti MP. (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem.273: 5419–5422. ArticlePubMedCAS Google Scholar
Schlegel A, Volonte D, Engelmann JA. (1999) Crowded little caves: structure and function of caveolae. Cell. Signal.10: 457–463. Article Google Scholar
Müller G, Frick W. (1999) Signalling via caveolin: Involvement in the cross-talk between phosphoinositolglycans and insulin. Cell. Mol. Life Sci.56: 945–970. ArticlePubMed Google Scholar
Li S, Couet J, Lisanti MP. (1996) Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J. Biol. Chem.272: 29182–29190. Article Google Scholar
Couet J, Sargiacomo M, Lisanti MP. (1997) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J. Biol. Chem.272: 30429–30438. ArticlePubMedCAS Google Scholar
Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP. (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. J. Biol. Chem.272: 6525–6533. ArticlePubMedCAS Google Scholar
Pulido N, Casla A, Suarez A, Casanova B, Arrieta FJ, Rovira A. (1996) Sulphonylurea stimulates glucose uptake in rats through an ATP-sensitive K+ channel dependent mechanism. Diabetologia39: 22–27. PubMedCAS Google Scholar
Shi H, Moustaid-Moussa N, Wilkison WO, Zemel MB. (1999) Role of the sulfonylurea receptor in regulating human adipocyte metabolism. FASEB J.13: 1833–1838. ArticlePubMedCAS Google Scholar
Rajan A, Luo Z-T, Kahn BB, Comstock JP, Cushman SW, Boyd III AE. (1994) Do adipocytes contain high affinity sulfonylurea receptors? Endocrinology134: 1581–1588. ArticlePubMedCAS Google Scholar
Draznin B, Sussman KE, Eckel RH, Kao M, Yost T, Sherman NA. (1988) Possible role of cytosolic free calcium concentrations in mediating insulin resistance of obesity and hyperin-sulinemia. J. Clin. Invest.82: 1848–1852. ArticlePubMedPubMed CentralCAS Google Scholar
Draznin B, Kao M, Sussman KE. (1987) Insulin and glyburide increase cytosolic free-Ca2+ concentration in isolated rat adipocytes. Diabetes36: 174–177. ArticlePubMedCAS Google Scholar
Kim JH, Kiefer LL, Woychik RP, et al. (1997) Agouti regulation of intracellular clacium. Role of melanocortin receptor. Am. J. Physiol.272: E379–E384. PubMedCAS Google Scholar
Zemel MB, Kim LL, Woychik RP, et al. (1995) Agouti regulation of intracellular calcium: role in the insulin resistance of viable yellow mice. Proc. Natl. Acad. Sci. U.S.A. 92: 4733–4737. ArticlePubMedPubMed CentralCAS Google Scholar
Gribble FM, Tucker SJ, Seino S, Ashcroft FM. (1998) Tissue specificity of sulphonylureas: studies on cloned cardiac and _β_-cell KATP channels. Diabetes47: 1412–1418. ArticlePubMedCAS Google Scholar
Smits P, Thien T. (1995) Cardiovascular effects of sulphonylurea derivatives. Implications for the treatment of NIDDM. Diabetologia38: 116–122. ArticlePubMedCAS Google Scholar
Leibowitz G, Cerasi E. (1996) Sulphonylurea treatment of NIDDM patients with cardiovascular disease: a mixed blessing? Diabetologia39: 503–515. ArticlePubMedCAS Google Scholar
UKPDS. (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with Type II diabetes (UKPDS 33). Lancet352: 837–853. Article Google Scholar
Isomoto S, Kondo C, Yamada M. (1996) A novel sulphonylurea receptor forms with BIR (KIR6.2) a smooth muscle type of ATP-sensitive K+ channels. J. Biol. Chem.271: 24321–24325. ArticlePubMedCAS Google Scholar
Ämmälä C, Moorhouse A, Gribble FM. (1996) Promiscuous coupling between the sulphonylurea receptor and inwardly-rectifying potassium channels. Nature379: 545–548. ArticlePubMed Google Scholar
Geisen K, Hitzel V, Ökonomopulos R, Pünter J, Weyer R, Summ H-D. (1985) Inhibition of [3H]glibenclamide binding to sulfonylurea receptors by oral antidiabetics. Drug Res.35: 707–712. CAS Google Scholar
Dunn-Meynell A, Rawson N, Levin B. (1998) Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res.814: 41–54. ArticlePubMedCAS Google Scholar
Spanswick D, Smith M, Groppi V, Logam S, Ashford ML. (1997) Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature390: 521–525. ArticlePubMedCAS Google Scholar
Harvey J, McKenna F, Herson PS, Spanswick D, Ashford ML. (1997) Leptin activates ATP-sensitive potassium channels in the rat insulin-secreting cell line, CRI-G1. J. Physiol.504: 527–535. ArticlePubMedPubMed CentralCAS Google Scholar
Considine RV, Caro JF. (1997) Leptin and the regulation of body weight. Int. J. Biochem. Cell Biol.29: 1255–1272. ArticlePubMedCAS Google Scholar
Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. (2000) Central nervous system control of food intake. Nature404: 661–671. ArticlePubMedCAS Google Scholar
Harvey J, Ashford ML. (1998) Diazoxide- and leptin-activated K(ATP) currents exhibit differential sensitivity to englitazone and ciclazindol in the rat CRI-G1 insulin-secreting cell line. Brit. Pharmacol.124: 1557–1565. ArticleCAS Google Scholar
Harvey J, Ashford ML. (1998) Role of tyrosine phosphorylation in leptin activation of ATP-sensitive K+ channels in the rat insulinoma cell line CRI-G1. J. Physiol.510: 47–61. ArticlePubMedPubMed CentralCAS Google Scholar
Harvey J, Ashford ML. (1998) Insulin occludes leptin activation of ATP-sensitive K+ channels in rat CRI-G1 insulin secreting cells. J. Physiol.511: 695–706. ArticlePubMedPubMed CentralCAS Google Scholar
Mastick CC, Brady MJ, Saltiel AR. (1995) Insulin stimulates the tyrosine phosphorylation of caveolin. J. Cell Biol.129: 1523–1531. ArticlePubMedCAS Google Scholar
Saad MJA, Velloso LA, Carvalho CRO. (1995) Angiotensin II induces tyrosine phosphorylation of insulin receptor substrate 1 and its association with phosphatidylinositol 3-kinase in rat heart. Biochem. J.310: 741–744. ArticlePubMedPubMed CentralCAS Google Scholar
Kowalski-Chauvel A, Pradayrol L, Vaysse N, Seva C. (1996) Gastrin stimulates tyrosine phosphorylation of insulin receptor substrate 1 and its association with Grb2 and the phosphatidylinositol 3-kinase. J. Biol. Chem.271: 26356–26361. ArticlePubMedCAS Google Scholar
Argetsinger LS, Hsu GW, Myers MG, Billestrup N, White MF, Carter-Su C. (1995) Growth hormone, interferon-γ, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1. J. Biol. Chem.270: 14685–14692. ArticlePubMedCAS Google Scholar
Verdier F, Chretien S, Billat C, Gisselbrecht S, Lacombe C, Mayeux P. (1997) Erythropoietin induces the tyrosine phosphorylation of insulin receptor substrate-2. J. Biol. Chem.272: 26173–26178. ArticlePubMedCAS Google Scholar
Lazar DF, Knez JJ, Medof ME, Cuatrecasas P, Saltiel AR. (1994) Stimulation of glycogen synthesis by insulin in human erythroleukemia cells requires the synthesis of glycosyl-phosphatidylinositol. Proc. Natl. Acad. Sci. USA91: 9665–9669. ArticlePubMedCASPubMed Central Google Scholar
Jones DR, Varela-Nieto I. (1998) The role of glycosyl-phosphatidylinositol in signal transduction. Int. J. Biochem. Cell Biol.30: 313–326. ArticlePubMedCAS Google Scholar
Larner J, Huang LC. (1999) Identification of a novel inositol glycan signaling pathway with significant therapeutic relevance to insulin resistance: an insulin signaling model using both tyrosine kinase and G-proteins. Diabetes Rev.V7 N3: 217–231. Google Scholar
Frick W, Bauer A, Bauer J, Wied S, Müller G. (1998) Structure-activity relationship of synthetic phosphoinositolglycans mimicking metabolic insulin action. Biochemistry38: 13421–13436. Article Google Scholar
Frick W, Bauer A, Bauer J, Wied S, Müller G. (1998) Insulin-mimetic signalling of synthetic phosphoinositolglycans in isolated rat adipocytes. Biochem. J.336: 163–181. ArticlePubMedPubMed CentralCAS Google Scholar
Müller G, Wied S, Piossek C, Bauer A, Bauer J, Frick W. (1998) Convergence and divergence of the signaling pathways for insulin and phosphoinositolglycans. Mol. Med.4: 299–323. ArticlePubMed Google Scholar
Müller G, Wied S, Frick W. (2000) Cross talk of pp125FAK and pp59Lyn non-receptor tyrosine kinases to insulin-mimetic signaling in adipocytes. Mol. Cell. Biol.20: 4708–4723. ArticlePubMedPubMed Central Google Scholar
Badian M, Korn A, Lehr K-H. (1994) Absolute bioavailability of glimepiride (Amaryl registered) after oral administration. Drug Metab. Drug Interact.11: 331–339. ArticleCAS Google Scholar
Rosenkranz B, Profozic V, Metelko Z. (1996) Pharmacokinetics and safety of glimepiride at clinically effective doses in diabetic patients with renal impairment. Diabetologia39: 1617–1624. ArticlePubMedCAS Google Scholar
Lehr KH, Damm P. (1990) Simultaneous determination of the sulfonylurea glimepiride and its metabolites in human serum and urine by high-performance liquid chromatography after pre-column derivatization. J. Chromatogr.526: 497–505. ArticlePubMedCAS Google Scholar
Wernicke-Panten K, Haupt E, Pfeiffer C. (1994) Early onset of pharmacodynamic effects of glimepiride in type II diabetic patients [abstract]. Diabetologia37(Suppl. 1): 163. Google Scholar
Rosenstock J, Samols E, Muchmore DB. (1996) Glimepiride, a new once-daily sulfonylurea: a double-blind placebo-controlled study of NIDDM patients. Diabetes Care19: 1194–1199. ArticlePubMedCAS Google Scholar
Sonnenberg GE, Garg DC, Weidler DJ. (1997) Short-term comparison of once-versus twice-daily administration of glimepiride in patients with non-insulin-dependent diabetes mellitus. Ann. Pharmacother.31: 671–676. ArticlePubMedCAS Google Scholar
Geisen K, Vegh A, Krause E. (1996) Cardiovascular effects of conventional sulfonylureas and glimepiride. Horm. Metab. Res.28: 496–507. ArticlePubMedCAS Google Scholar
Ballagi-Pordany G, Nemeth M, Aranyi Z. (1992) Effect of glimepiride on the electrical activity of isolated rabbit heart muscle. Drug Res.42: 111–113. CAS Google Scholar
Müller G, Ertl J, Gerl M, Preibisch G. (1997) Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J. Biol. Chem.272: 10585–10593. ArticlePubMed Google Scholar
Müller G, Wied S, Crecelius A, Kessler A, Eckel J. (1997) Phosphoinositolglycan-peptides from yeast potently induce metabolic insulin actions in isolated rat adipocytes, cardiomyocytes, and diaphragms. Endocrinology138: 3459–3475. ArticlePubMed Google Scholar
Grynkiewicz G, Pocnic M, Tsien RY. (1985) A new generation of Ca2+ indicators with greatly improved fluorescent properties. J. Biol. Chem.260: 3440–3450. PubMedCAS Google Scholar
Zerangue N, Schwappach B, Jan YN, Jan LY. (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron22: 537–548. ArticlePubMedCAS Google Scholar
Müller G, Wied S, Welte S. (2000) Involvement of caveolae in insulin-mimetic signaling by the sulfonylurea Amaryl. Chem. Phys. Lipids7: 7–8 [abstract]. Google Scholar