Positivity bounds on Minimal Flavor Violation (original) (raw)

Abstract

From general analyticity and unitarity requirements on the UV theory, positivity bounds on the Wilson coefficients of the dimension-8 operators composed of 4 fermions and two derivatives appearing in the Standard Model Effective Field Theory have been derived recently. We explore the fate of these bounds in the context of models endowed with a Minimal Flavor Violation (MFV) structure, models in which the flavor structure of higher dimensional operators is inherited from the one already contained in the Yukawa sector of the Standard Model Lagrangian. Our goal is to check whether the general positivity bounds translate onto bounds on the Yukawa coefficients and/or on elements of the CKM matrix. MFV fixes the coefficients of dimension-8 operators up to some multiplicative flavor-blind factors and we find that, in the most generic setup, the freedom left by those unspecified coefficients is enough as not to constrain the parameters of the renormalizable Yukawa sector. On the contrary, the latter shape the allowed region for the former. Requiring said overall coefficients to take natural \( \mathcal{O}(1) \) values could give rise to bounds on the Yukawa couplings. Remarkably, at leading order in an expansion in powers of the Yukawa matrices, no bounds on the CKM entries can be retrieved.

Article PDF

Similar content being viewed by others

References

  1. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  2. T. N. Pham and T. N. Truong, Evaluation of the Derivative Quartic Terms of the Meson Chiral Lagrangian From Forward Dispersion Relation, Phys. Rev. D 31 (1985) 3027 [INSPIRE].
    Article ADS Google Scholar
  3. V. Mateu, Universal Bounds for SU(3) Low Energy Constants, Phys. Rev. D 77 (2008) 094020 [arXiv:0801.3627] [INSPIRE].
    Article ADS Google Scholar
  4. B. Bellazzini, C. Cheung and G. N. Remmen, Quantum Gravity Constraints from Unitarity and Analyticity, Phys. Rev. D 93 (2016) 064076 [arXiv:1509.00851] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  5. Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  6. B. Bellazzini, Softness and amplitudes’ positivity for spinning particles, JHEP 02 (2017) 034 [arXiv:1605.06111] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  7. B. Bellazzini, L. Martucci and R. Torre, Symmetries, Sum Rules and Constraints on Effective Field Theories, JHEP 09 (2014) 100 [arXiv:1405.2960] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  8. J. Gu and L.-T. Wang, Sum Rules in the Standard Model Effective Field Theory from Helicity Amplitudes, JHEP 03 (2021) 149 [arXiv:2008.07551] [INSPIRE].
    Article ADS Google Scholar
  9. G. N. Remmen and N. L. Rodd, Consistency of the Standard Model Effective Field Theory, JHEP 12 (2019) 032 [arXiv:1908.09845] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  10. C. Zhang and S.-Y. Zhou, Positivity bounds on vector boson scattering at the LHC, Phys. Rev. D 100 (2019) 095003 [arXiv:1808.00010] [INSPIRE].
    Article ADS Google Scholar
  11. Q. Bi, C. Zhang and S.-Y. Zhou, Positivity constraints on aQGC: carving out the physical parameter space, JHEP 06 (2019) 137 [arXiv:1902.08977] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  12. C. Zhang and S.-Y. Zhou, Convex Geometry Perspective on the (Standard Model) Effective Field Theory Space, Phys. Rev. Lett. 125 (2020) 201601 [arXiv:2005.03047] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  13. B. Fuks, Y. Liu, C. Zhang and S.-Y. Zhou, Positivity in electron-positron scattering: testing the axiomatic quantum field theory principles and probing the existence of UV states, Chin. Phys. C 45 (2021) 023108 [arXiv:2009.02212] [INSPIRE].
    Article ADS Google Scholar
  14. K. Yamashita, C. Zhang and S.-Y. Zhou, Elastic positivity vs extremal positivity bounds in SMEFT: a case study in transversal electroweak gauge-boson scatterings, JHEP 01 (2021) 095 [arXiv:2009.04490] [INSPIRE].
    Article ADS Google Scholar
  15. G. N. Remmen and N. L. Rodd, Signs, Spin, SMEFT: Positivity at Dimension Six, arXiv:2010.04723 [INSPIRE].
  16. B. Bellazzini, J. Elias Miró, R. Rattazzi, M. Riembau and F. Riva, Positive Moments for Scattering Amplitudes, arXiv:2011.00037 [INSPIRE].
  17. A. J. Tolley, Z.-Y. Wang and S.-Y. Zhou, New positivity bounds from full crossing symmetry, arXiv:2011.02400 [INSPIRE].
  18. J. Gu, L.-T. Wang and C. Zhang, An unambiguous test of positivity at lepton colliders, arXiv:2011.03055 [INSPIRE].
  19. T. Trott, Causality, Unitarity and Symmetry in Effective Field Theory, arXiv:2011.10058 [INSPIRE].
  20. G. N. Remmen and N. L. Rodd, Flavor Constraints from Unitarity and Analyticity, Phys. Rev. Lett. 125 (2020) 081601 [arXiv:2004.02885] [INSPIRE].
    Article ADS Google Scholar
  21. G. D’Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
    Article ADS Google Scholar
  22. G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].
    Article ADS Google Scholar
  23. D. A. Faroughy, G. Isidori, F. Wilsch and K. Yamamoto, Flavour symmetries in the SMEFT, JHEP 08 (2020) 166 [arXiv:2005.05366] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  24. V. Cirigliano, B. Grinstein, G. Isidori and M. B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [INSPIRE].
    Article ADS Google Scholar
  25. T. Feldmann and T. Mannel, Large Top Mass and Non-Linear Representation of Flavour Symmetry, Phys. Rev. Lett. 100 (2008) 171601 [arXiv:0801.1802] [INSPIRE].
    Article ADS Google Scholar
  26. A. L. Kagan, G. Perez, T. Volansky and J. Zupan, General Minimal Flavor Violation, Phys. Rev. D 80 (2009) 076002 [arXiv:0903.1794] [INSPIRE].
    Article ADS Google Scholar
  27. R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D. M. Straub, U(2) and Minimal Flavour Violation in Supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].
    Article ADS Google Scholar
  28. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
    Article ADS Google Scholar
  29. C. W. Murphy, Dimension-8 operators in the Standard Model Eective Field Theory, JHEP 10 (2020) 174 [arXiv:2005.00059] [INSPIRE].
    Article ADS Google Scholar
  30. H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu and Y.-H. Zheng, Complete Set of Dimension-8 Operators in the Standard Model Effective Field Theory, arXiv:2005.00008 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Deutsches Elektronen-Synchrotron (DESY), D-22607, Hamburg, Germany
    Quentin Bonnefoy, Emanuele Gendy & Christophe Grojean
  2. Institute of Theoretical Physics, Universität Hamburg, 22761, Hamburg, Germany
    Emanuele Gendy
  3. Institut für Physik, Humboldt-Universität zu Berlin, D-12489, Berlin, Germany
    Christophe Grojean

Authors

  1. Quentin Bonnefoy
  2. Emanuele Gendy
  3. Christophe Grojean

Corresponding author

Correspondence toEmanuele Gendy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2011.12855

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Bonnefoy, Q., Gendy, E. & Grojean, C. Positivity bounds on Minimal Flavor Violation.J. High Energ. Phys. 2021, 115 (2021). https://doi.org/10.1007/JHEP04(2021)115

Download citation

Keywords