Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD (original) (raw)
CDF collaboration, T. Aaltonen et al., Evidence for \( t\overline{t}\gamma \) production and measurement of \( {\sigma}_{t\overline{t}\gamma }/{\sigma}_{t\overline{t}} \), Phys. Rev.D 84 (2011) 031104 [arXiv:1106.3970] [INSPIRE].
CMS collaboration, Measurement of the inclusive top-quark pair + photon production cross section in the muon + jets channel in pp collisions at 8 TeV, CMS-PAS-TOP-13-011, CERN, Geneva Switzerland (2013).
ATLAS collaboration, Observation of top-quark pair production in association with a photon and measurement of the \( t\overline{t}\gamma \) production cross section in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Rev.D 91 (2015) 072007 [arXiv:1502.00586] [INSPIRE].
CMS collaboration, Measurement of top quark-antiquark pair production in association with a W or Z boson in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J.C 74 (2014) 3060 [arXiv:1406.7830] [INSPIRE].
CMS collaboration, Observation of top quark pairs produced in association with a vector boson in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP01 (2016) 096 [arXiv:1510.01131] [INSPIRE].
ATLAS collaboration, Measurement of the \( t\overline{t}W \) and \( t\overline{t}Z \) production cross sections in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP11 (2015) 172 [arXiv:1509.05276] [INSPIRE].
W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE]. ArticleADS Google Scholar
C.N. Leung, S.T. Love and S. Rao, Low-energy manifestations of a new interaction scale: operator analysis, Z. Phys.C 31 (1986) 433 [INSPIRE]. ADS Google Scholar
G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev.D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE]. ADS Google Scholar
C. Zhang and F. Maltoni, Top-quark decay into Higgs boson and a light quark at next-to-leading order in QCD, Phys. Rev.D 88 (2013) 054005 [arXiv:1305.7386] [INSPIRE]. ADS Google Scholar
C. Zhang, Effective field theory approach to top-quark decay at next-to-leading order in QCD, Phys. Rev.D 90 (2014) 014008 [arXiv:1404.1264] [INSPIRE]. ADS Google Scholar
C. Degrande, F. Maltoni, J. Wang and C. Zhang, Automatic computations at next-to-leading order in QCD for top-quark flavor-changing neutral processes, Phys. Rev.D 91 (2015) 034024 [arXiv:1412.5594] [INSPIRE]. ADS Google Scholar
D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev.D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE]. ADS Google Scholar
C. Zhang, Single top production at next-to-leading order in the standard model effective field theory, Phys. Rev. Lett.116 (2016) 162002 [arXiv:1601.06163] [INSPIRE]. ArticleADS Google Scholar
R. Röntsch and M. Schulze, Constraining couplings of top quarks to the Z boson in \( t\overline{t} \) + Z production at the LHC, JHEP07 (2014) 091 [Erratum ibid.09 (2015) 132] [arXiv:1404.1005] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. ArticleADS Google Scholar
C. Zhang, _Automating predictions for standard model effective field theory in MadGraph_5 aMC@NLO, arXiv:1601.03994 [INSPIRE].
C. Zhang and S. Willenbrock, Effective-field-theory approach to top-quark production and decay, Phys. Rev.D 83 (2011) 034006 [arXiv:1008.3869] [INSPIRE]. ADS Google Scholar
C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant new physics in top pair production at hadron colliders, JHEP03 (2011) 125 [arXiv:1010.6304] [INSPIRE]. ArticleADS Google Scholar
J.A. Aguilar-Saavedra, B. Fuks and M.L. Mangano, Pinning down top dipole moments with ultra-boosted tops, Phys. Rev.D 91 (2015) 094021 [arXiv:1412.6654] [INSPIRE]. ADS Google Scholar
A. Tonero and R. Rosenfeld, Dipole-induced anomalous top quark couplings at the LHC, Phys. Rev.D 90 (2014) 017701 [arXiv:1404.2581] [INSPIRE]. ADS Google Scholar
C. Zhang, N. Greiner and S. Willenbrock, Constraints on non-standard top quark couplings, Phys. Rev.D 86 (2012) 014024 [arXiv:1201.6670] [INSPIRE]. ADS Google Scholar
J. de Blas, M. Chala and J. Santiago, Renormalization group constraints on new top interactions from electroweak precision data, JHEP09 (2015) 189 [arXiv:1507.00757] [INSPIRE]. ArticleADS Google Scholar
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2_._0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE]. ArticleADS Google Scholar
C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — the Universal FeynRules Output, Comput. Phys. Commun.183 (2012) 1201 [arXiv:1108.2040] [INSPIRE]. ArticleADS Google Scholar
R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP10 (2009) 003 [arXiv:0908.4272] [INSPIRE]. ArticleADS Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators I: formalism and λ dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE]. ArticleADSMathSciNet Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE]. ArticleADS Google Scholar
R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE]. ArticleADS Google Scholar
A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev.D 91 (2015) 055029 [arXiv:1406.7320] [INSPIRE]. ADS Google Scholar
F. Maltoni, D. Pagani and I. Tsinikos, Associated production of a top-quark pair with vector bosons at NLO in QCD: impact on ttH searches at the LHC, JHEP02 (2016) 113 [arXiv:1507.05640] [INSPIRE]. ArticleADS Google Scholar
S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons, JHEP06 (2015) 184 [arXiv:1504.03446] [INSPIRE]. ArticleADS Google Scholar
P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP03 (2013) 015 [arXiv:1212.3460] [INSPIRE]. ArticleADS Google Scholar
B. Hespel, F. Maltoni and E. Vryonidou, Higgs and Z boson associated production via gluon fusion in the SM and the 2_HDM_, JHEP06 (2015) 065 [arXiv:1503.01656] [INSPIRE]. ArticleADS Google Scholar
CMS collaboration, Combination of ATLAS and CMS top quark pair cross section measurements in the emu final state using proton-proton collisions at 8 TeV, CMS-PAS-TOP-14-016, CERN, Geneva Switzerland (2014).
M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(α 4 S ), Phys. Rev. Lett.110 (2013) 252004 [arXiv:1303.6254] [INSPIRE]. ArticleADS Google Scholar