Dijets at Tevatron cannot constrain SMEFT four-quark operators (original) (raw)
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb −1_of proton-proton collision data at_ \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, ATLAS-CONF-2019-005 (2019).
CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and λ Dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE]. ArticleADSMathSciNet Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE].
R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE]. ArticleADS Google Scholar
Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev.D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].
L. Berthier, M. Bjørn and M. Trott, Incorporating doubly resonant W ±data in a global fit of SMEFT parameters to lift flat directions, JHEP09 (2016) 157 [arXiv:1606.06693] [INSPIRE]. ArticleADS Google Scholar
J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data, JHEP06 (2018) 146 [arXiv:1803.03252] [INSPIRE].
E. da Silva Almeida, A. Alves, N. Rosa Agostinho, O.J.P. É boli and M.C. Gonzalez-Garcia, Electroweak Sector Under Scrutiny: A Combined Analysis of LHC and Electroweak Precision Data, Phys. Rev.D 99 (2019) 033001 [arXiv:1812.01009] [INSPIRE].
C. Zhang and F. Maltoni, Top-quark decay into Higgs boson and a light quark at next-to-leading order in QCD, Phys. Rev.D 88 (2013) 054005 [arXiv:1305.7386] [INSPIRE].
R. Gauld, B.D. Pecjak and D.J. Scott, One-loop corrections to h → b \( \overline{b} \)and h → τ \( \overline{\tau} \)decays in the Standard Model Dimension-6 EFT: four-fermion operators and the large-mtlimit, JHEP05 (2016) 080 [arXiv:1512.02508] [INSPIRE].
R. Gauld, B.D. Pecjak and D.J. Scott, QCD radiative corrections for h → b \( \overline{b} \)in the Standard Model Dimension-6 EFT, Phys. Rev.D 94 (2016) 074045 [arXiv:1607.06354] [INSPIRE].
F. Maltoni, E. Vryonidou and C. Zhang, Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD, JHEP10 (2016) 123 [arXiv:1607.05330] [INSPIRE]. ArticleADS Google Scholar
C. Zhang, Single Top Production at Next-to-Leading Order in the Standard Model Effective Field Theory, Phys. Rev. Lett.116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].
J. Baglio, S. Dawson and I.M. Lewis, An NLO QCD effective field theory analysis of W +W −production at the LHC including fermionic operators, Phys. Rev.D 96 (2017) 073003 [arXiv:1708.03332] [INSPIRE]. ADS Google Scholar
S. Dawson and P.P. Giardino, Higgs decays to ZZ and Z_γ in the standard model effective field theory: An NLO analysis_, Phys. Rev.D 97 (2018) 093003 [arXiv:1801.01136] [INSPIRE]. ADS Google Scholar
S. Dawson and A. Ismail, Standard model EFT corrections to Z boson decays, Phys. Rev.D 98 (2018) 093003 [arXiv:1808.05948] [INSPIRE].
S. Dawson and P.P. Giardino, Electroweak corrections to Higgs boson decays to γγ and W+W−in standard model EFT, Phys. Rev.D 98 (2018) 095005 [arXiv:1807.11504] [INSPIRE].
J.M. Cullen, B.D. Pecjak and D.J. Scott, NLO corrections to h → b \( \overline{b} \)decay in SMEFT, JHEP08 (2019) 173 [arXiv:1904.06358] [INSPIRE]. Google Scholar
S. Dawson, P.P. Giardino and A. Ismail, Standard model EFT and the Drell-Yan process at high energy, Phys. Rev.D 99 (2019) 035044 [arXiv:1811.12260] [INSPIRE].
J. Baglio, S. Dawson and I.M. Lewis, NLO effects in EFT fits to W +W −production at the LHC, Phys. Rev.D 99 (2019) 035029 [arXiv:1812.00214] [INSPIRE].
E. Eichten, K.D. Lane and M.E. Peskin, New Tests for Quark and Lepton Substructure, Phys. Rev. Lett.50 (1983) 811 [INSPIRE]. ArticleADS Google Scholar
S. Alte, M. König and W. Shepherd, Consistent Searches for SMEFT Effects in Non-Resonant Dilepton Events, JHEP07 (2019) 144 [arXiv:1812.07575] [INSPIRE].
D0 collaboration, Measurement of the Differential Dijet Mass Cross Section. D0-5919 [INSPIRE].
G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An effective field theory approach, Nucl. Phys.B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
L. Lehman, Extending the Standard Model Effective Field Theory with the Complete Set of Dimension-7 Operators, Phys. Rev.D 90 (2014) 125023 [arXiv:1410.4193] [INSPIRE].
A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev.D 95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].
B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, …: Higher dimension operators in the SM EFT,JHEP08(2017) 016 [arXiv:1512.03433] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools, JHEP12 (2017) 070 [arXiv:1709.06492] [INSPIRE].
J. Aebischer et al., WCxf: an exchange format for Wilson coefficients beyond the Standard Model, Comput. Phys. Commun.232 (2018) 71 [arXiv:1712.05298] [INSPIRE].