Testing electroweak baryogenesis with future colliders (original) (raw)
A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz.5 (1967) 32 [JETP Lett.5 (1967) 24] [Sov. Phys. Usp.34 (1991)392] [Usp. Fiz. Nauk161 (1991) 61] [INSPIRE].
V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett.B 155 (1985) 36 [INSPIRE]. ArticleADS Google Scholar
F.R. Klinkhamer and N.S. Manton, A saddle point solution in the Weinberg-Salam theory, Phys. Rev.D 30 (1984) 2212 [INSPIRE]. ADS Google Scholar
P.B. Arnold and L.D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory, Phys. Rev.D 36 (1987) 581 [INSPIRE]. ADS Google Scholar
P.B. Arnold and L.D. McLerran, The sphaleron strikes back, Phys. Rev.D 37 (1988) 1020 [INSPIRE]. ADS Google Scholar
S.Y. Khlebnikov and M.E. Shaposhnikov, The statistical theory of anomalous fermion number nonconservation, Nucl. Phys.B 308 (1988) 885 [INSPIRE]. ArticleADS Google Scholar
M.S. Carena, M. Quirós and C.E.M. Wagner, Electroweak baryogenesis and Higgs and stop searches at LEP and the Tevatron, Nucl. Phys.B 524 (1998) 3 [hep-ph/9710401] [INSPIRE]. ArticleADS Google Scholar
S.J. Huber, P. John and M.G. Schmidt, Bubble walls, CP-violation and electroweak baryogenesis in the MSSM, Eur. Phys. J.C 20 (2001) 695 [hep-ph/0101249] [INSPIRE]. ArticleADS Google Scholar
M.S. Carena, M. Quirós, M. Seco and C.E.M. Wagner, Improved results in supersymmetric electroweak baryogenesis, Nucl. Phys.B 650 (2003) 24 [hep-ph/0208043] [INSPIRE]. ArticleADS Google Scholar
C. Lee, V. Cirigliano and M.J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis, Phys. Rev.D 71 (2005) 075010 [hep-ph/0412354] [INSPIRE]. ADS Google Scholar
V. Cirigliano, Y. Li, S. Profumo and M.J. Ramsey-Musolf, MSSM baryogenesis and electric dipole moments: an update on the phenomenology, JHEP01 (2010) 002 [arXiv:0910.4589] [INSPIRE]. ArticleADS Google Scholar
D. Delepine, J.M. Gerard, R. Gonzalez Felipe and J. Weyers, A light stop and electroweak baryogenesis, Phys. Lett.B 386 (1996) 183 [hep-ph/9604440] [INSPIRE]. ArticleADS Google Scholar
T. Cohen, D.E. Morrissey and A. Pierce, Electroweak baryogenesis and Higgs signatures, Phys. Rev.D 86 (2012) 013009 [arXiv:1203.2924] [INSPIRE]. ADS Google Scholar
P. John and M.G. Schmidt, Do stops slow down electroweak bubble walls?, Nucl. Phys.B 598 (2001) 291 [Erratum ibid.B 648 (2003) 449] [hep-ph/0002050] [INSPIRE].
P. John and M.G. Schmidt, Bubble wall velocity in the MSSM, hep-ph/0012077 [INSPIRE].
V. Cirigliano, M.J. Ramsey-Musolf, S. Tulin and C. Lee, Yukawa and tri-scalar processes in electroweak baryogenesis, Phys. Rev.D 73 (2006) 115009 [hep-ph/0603058] [INSPIRE]. ADS Google Scholar
D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Yukawa interactions and supersymmetric electroweak baryogenesis, Phys. Rev. Lett.102 (2009) 061301 [arXiv:0808.1144] [INSPIRE]. ArticleADS Google Scholar
Y. Li, S. Profumo and M. Ramsey-Musolf, Bino-driven electroweak baryogenesis with highly suppressed electric dipole moments, Phys. Lett.B 673 (2009) 95 [arXiv:0811.1987] [INSPIRE]. ArticleADS Google Scholar
J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis in the WKB approximation, Phys. Lett.B 417 (1998) 79 [Erratum ibid.B 448 (1999) 321] [hep-ph/9708393] [INSPIRE].
T. Konstandin, T. Prokopec and M.G. Schmidt, Kinetic description of fermion flavor mixing and CP-violating sources for baryogenesis, Nucl. Phys.B 716 (2005) 373 [hep-ph/0410135] [INSPIRE]. ArticleADS Google Scholar
T. Konstandin, T. Prokopec and M.G. Schmidt, Axial currents from CKM matrix CP-violation and electroweak baryogenesis, Nucl. Phys.B 679 (2004) 246 [hep-ph/0309291] [INSPIRE]. ArticleADS Google Scholar
J. Kozaczuk, S. Profumo, M.J. Ramsey-Musolf and C.L. Wainwright, Supersymmetric electroweak baryogenesis via resonant sfermion sources, Phys. Rev.D 86 (2012) 096001 [arXiv:1206.4100] [INSPIRE]. ADS Google Scholar
D.J.H. Chung, A.J. Long and L.-T. Wang, The 125 GeV Higgs and electroweak phase transition model classes, Phys. Rev.D 87 (2013) 023509 [arXiv:1209.1819] [INSPIRE]. ADS Google Scholar
S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP08 (2007) 010 [arXiv:0705.2425] [INSPIRE]. ArticleADS Google Scholar
P.H. Damgaard, D. O’Connell, T.C. Petersen and A. Tranberg, Constraints on new physics from baryogenesis and Large Hadron Collider data, Phys. Rev. Lett.111 (2013) 221804 [arXiv:1305.4362] [INSPIRE]. ArticleADS Google Scholar
V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev.D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE]. ADS Google Scholar
J.R. Espinosa, T. Konstandin and F. Riva, Strong electroweak phase transitions in the standard model with a singlet, Nucl. Phys.B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE]. ArticleADS Google Scholar
A. Noble and M. Perelstein, Higgs self-coupling as a probe of electroweak phase transition, Phys. Rev.D 78 (2008) 063518 [arXiv:0711.3018] [INSPIRE]. ADS Google Scholar
J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev.D 88 (2013) 055025 [arXiv:1306.4710] [INSPIRE]. ADS Google Scholar
T. Alanne, K. Tuominen and V. Vaskonen, Strong phase transition, dark matter and vacuum stability from simple hidden sectors, arXiv:1407.0688 [INSPIRE].
J.R. Espinosa and M. Quirós, Novel effects in electroweak breaking from a hidden sector, Phys. Rev.D 76 (2007) 076004 [hep-ph/0701145] [INSPIRE]. ADS Google Scholar
S. Profumo, M.J. Ramsey-Musolf, C.L. Wainwright and P. Winslow, Singlet-catalyzed electroweak phase transitions and precision Higgs studies, arXiv:1407.5342 [INSPIRE].
K. Fuyuto and E. Senaha, Improved sphaleron decoupling condition and the Higgs coupling constants in the real singlet-extended SM, Phys. Rev.D 90 (2014) 015015 [arXiv:1406.0433] [INSPIRE]. ADS Google Scholar
A.T. Davies, C.D. Froggatt and R.G. Moorhouse, Electroweak baryogenesis in the next-to-minimal supersymmetric model, Phys. Lett.B 372 (1996) 88 [hep-ph/9603388] [INSPIRE]. ArticleADS Google Scholar
S.J. Huber, T. Konstandin, T. Prokopec and M.G. Schmidt, Electroweak phase transition and baryogenesis in the NMSSM, Nucl. Phys.B 757 (2006) 172 [hep-ph/0606298] [INSPIRE]. ArticleADS Google Scholar
A. Menon, D.E. Morrissey and C.E.M. Wagner, Electroweak baryogenesis and dark matter in the NMSSM, Phys. Rev.D 70 (2004) 035005 [hep-ph/0404184] [INSPIRE]. ADS Google Scholar
W. Huang, Z. Kang, J. Shu, P. Wu and J.M. Yang, New insights of electroweak phase transition in NMSSM, arXiv:1405.1152 [INSPIRE].
J. Kozaczuk, S. Profumo, L.S. Haskins and C.L. Wainwright, Cosmological phase transitions and their properties in the NMSSM, arXiv:1407.4134 [INSPIRE].
S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev.D 7 (1973) 1888 [INSPIRE]. ADS Google Scholar
P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev.D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE]. ADS Google Scholar
DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3_, a modular framework for fast simulation of a generic collider experiment_, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE]. Article Google Scholar
A. Avetisyan et al., Methods and results for standard model event generation at \( \sqrt{s}=14 \) TeV, 33 TeV and 100 TeV proton colliders (a Snowmass whitepaper), arXiv:1308.1636 [INSPIRE].
A. Avetisyan et al., Snowmass energy frontier simulations using the open science grid (a Snowmass 2013 whitepaper), arXiv:1308.0843 [INSPIRE].
X. Zhang and B.L. Young, Effective Lagrangian approach to electroweak baryogenesis: Higgs mass limit and electric dipole moments of fermion, Phys. Rev.D 49 (1994) 563 [hep-ph/9309269] [INSPIRE]. ADS Google Scholar
C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev.D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE]. ADS Google Scholar
ATLAS collaboration, Studies of the ATLAS potential for Higgs self-coupling measurements at a high luminosity LHC, ATL-PHYS-PUB-2013-001, CERN, Geneva Switzerland (2013).
F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson self-coupling measurements using ratios of cross sections, JHEP06 (2013) 016 [arXiv:1301.3492] [INSPIRE]. ArticleADS Google Scholar
V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-pair production and measurement of the triscalar coupling at LHC(8, 14_)_, Phys. Lett.B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE]. ArticleADS Google Scholar
W. Yao, Studies of measuring Higgs self-coupling with \( HH\to b\overline{b}\gamma \gamma \) at the future hadron colliders, arXiv:1308.6302 [INSPIRE].
Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. (2014) [arXiv:1303.5076] [INSPIRE].
LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett.112 (2014) 091303 [arXiv:1310.8214] [INSPIRE]. ArticleADS Google Scholar
R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev.D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE]. ADS Google Scholar