Whole-body MRI at high field: technical limits and clinical potential (original) (raw)

References

  1. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962
    Article CAS PubMed Google Scholar
  2. Wang Y (2000) Description of parallel imaging in MRI using multiple coils. Magn Reson Med 44:495–499
    Google Scholar
  3. Paschal CB, Morris HD (2004) K-space in the clinic. J Magn Reson Imaging 19:145–159
    Article Google Scholar
  4. De Zwart JA, Ledden PJ, van Gelderen P, Bodurka J, Chu R, Duyn JH (2004) Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla. Magn Reson Med 51:22–26
    Article Google Scholar
  5. Marzola P, Osculati F, Sbarbati A (2003) High field MRI in preclinical research. Eur J Radiol 48:165–170
    Article Google Scholar
  6. Chen W, Ugurbil K (1999) High spatial resolution functional magnetic resonance imaging at very-high-magnetic field. Top Magn Reson Imaging 10:63–78
    Google Scholar
  7. Silvennoinen MJ, Clingman CS, Golay X, Kauppinen RA, van Zijl PC (2003) Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla. Magn Reson Med 49:47–60
    Article Google Scholar
  8. Tkac I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R (2001) In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 46:451–456
    Article Google Scholar
  9. Ugurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, Henry PG, Kim SG, Lieu H, Tkac I, Vaughan T, Van De Moortele PF, Yacoub E, Zhu XH (2003) Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 21:1263–1281
    Article Google Scholar
  10. Rotter M, Berg A, Langenberger H, Grampp S, Imhof H, Moser E (2001) Autocorrelation analysis of bone structure. J Magn Reson Imaging 14(1):87–93
    Article Google Scholar
  11. Uematsu H, Dougherty L, Takahashi M, Ohno Y, Nakatsu M, Song HK, Ferrari VA, Gefter WB, Schnall MD, Hatabu H (2001) Pulmonary MR angiography with contrast agent at 4 Tesla: a preliminary result. Magn Reson Med 46:1028–1030
    Google Scholar
  12. Dougherty L, Connick TJ, Mizsei G (2001) Cardiac imaging at 4 Tesla. Magn Reson Med 45:176–178
    Article Google Scholar
  13. Klarhofer M, Csapo B, Balassy C, Szeles JC, Moser E (2001) High-resolution blood flow velocity measurements in the human finger. Magn Reson Med 45:716–719
    Article Google Scholar
  14. Szeles JC, Csapo B, Klarhofer M, Balassy C, Hoda R, Berg A, Roden M, Polterauer P, Waldhausl W, Moser E (2001) In vivo magnetic resonance micro-imaging of the human toe at 3 Tesla. Magn Reson Imaging 19:1235–1238
    Article Google Scholar
  15. Csapo B, Szeles J, Helbich TH, Klarhofer M, Balassy C, Pammer J, Obermair A (2002) Histopathologic correlation of high-resolution magnetic resonance imaging of human cervical tissue samples at 3 Tesla: validation of a technique. Invest Radiol 37:381–385
    Article Google Scholar
  16. Lin W, An H, Chen Y, Nicholas P, Zhai G, Gerig G, Gilmore J, Bullitt E (2003) Practical consideration for 3T imaging. Magn Reson Imaging Clin N Am 11:615–639
    Google Scholar
  17. Uematsu H, Dougherty L, Takahashi M, Ohno Y, Nakatsu M, Schnall MD, Hatabu H (2003) Abdominal imaging at 4 T MR system: a preliminary result. Eur J Radiol 47:161–163
    Article Google Scholar
  18. Price SJ, Burnet NG, Donovan T, Green HA, Pena A, Antoun NM, Pickard JD, Carpenter TA, Gillard JH (2003) Diffusion tensor imaging of brain tumours at 3T: a potential tool for assessing white matter tract invasion? Clin Radiol 58:455–462
    Article CAS PubMed Google Scholar
  19. Norris D (2003) High field human imaging. J Magn Reson Imaging 18:519–529
    Article PubMed Google Scholar
  20. Hormann M, Traxler H, Ba-Ssalamah A, Mlynarik V, Shodaj-Baghini M, Kubiena H, Trattnig S (2003) Correlative high-resolution MR-anatomic study of sciatic, ulnar, and proper palmar digital nerve. Magn Reson Imaging 21:879–885
    Article Google Scholar
  21. Hinton DP, Wald LL, Pitts J, Schmitt F (2003) Comparison of cardiac MRI on 1.5 and 3.0 Tesla clinical whole body systems. Invest Radiol 38:436–442
    Article Google Scholar
  22. Sosna J, Pedrosa I, Dewolf WC, Mahallati H, Lenkinski RE, Rofsky NM (2004) MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla. Acad Radiol 11:857–862
    Article Google Scholar
  23. Uematsu H, Takahashi M, Dougherty L, Hatabu H (2004) High field body MR imaging—preliminary experiences. J Clin Imaging 28:159–162
    Article Google Scholar
  24. Karlberg M, Annertz M, Magnusson M (2004) Acute vestibular neuritis visualized by 3-T magnetic resonance imaging with high-dose gadolinium. Arch Otolaryngol Head Neck Surg 130:229–232
    Article Google Scholar
  25. Huber ME, Kozerke S, Pruessmann KP, Smink J, Boesiger P (2004) Sensitivity-encoded coronary MRA at 3T. Magn Reson Med 52:221–227
    Article Google Scholar
  26. Nayak KS, Cunningham CH, Santos JM, Pauly JM (2004) Real-time cardiac MRI at 3 Tesla. Magn Reson Med 51:655–660
    Article Google Scholar
  27. Fuetterer JJ, Scheenen TW, Huisman HJ, Klomp DW, van Dorsten FA, Hulsbergen-van de Kaa CA, Witjes JA, Heerschap A, Barentsz JO (2004) Initial experience of 3 Tesla endorectal coil magnetic resonance imaging and 1H-spectroscopic imaging of the prostate. Invest Radiol 39:671–680
    Article Google Scholar
  28. Graf H, Schick F, Claussen CD, Seemann MD (2004) MR visualization of the inner ear structures: comparison of 1.5 Tesla and 3 Tesla images. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 176:17–20
    Article Google Scholar
  29. Baudendistel KT, Heverhagen JT, Knopp MV (2004) Clinical MR at 3 Tesla: current status. Radiologe 44:11–18
    Article CAS PubMed Google Scholar
  30. Lenk S, Ludescher B, Martirosan P, Schick F, Claussen CD, Schlemmer HP (2004) 3.0 T high-resolution MR imaging of carpal ligaments and TFCC. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 176:664–667
    Article Google Scholar
  31. Bloch BN, Rofsky NM, Baroni RH, Marquis RP, Pedrosa I, Lenkinski RE (2004) 3 Tesla magnetic resonance imaging of the prostate with combined pelvic phased-array and endorectal coils; initial experience (1). Acad Radiol 11:863–877
    Article Google Scholar
  32. Lutterbey G, Gieseke J, von Falkenhausen M, Morakkabati N, Schild H (2005) Lung MRI at 3.0T: a comparison of helical CT and high-field MRI in the detection of diffuse lung disease. Eur Radiol. DOI 10.1007/s00330-004-2548-1
  33. Hoult DI (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imag 12:46–67
    Article CAS Google Scholar
  34. Michaeli S, Garwood M, Zhu XH, DelaBarre L, Andersen P, Adriany G, Merkle H, Ugurbil K, Chen W (2002) Proton T2 relaxation study of water, _N_-acetylaspartate, and creatine in human brain using Hahn and Carr–Purcell spin echoes at 4T and 7T. Magn Reson Med 47:629–633
    Article Google Scholar
  35. Ethofer T, Mader I, Seeger U, Helms G, Erb M, Grodd W, Ludolph A, Klose U (2003) Magn Reson Med 50:1296–1301
    Article Google Scholar
  36. Bezelaire CMJ, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659
    Google Scholar
  37. Hennig J, Scheffler K (2001) Hyperechoes. Magn Reson Med 46:6–12
    Google Scholar
  38. Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219:828–834
    CAS PubMed Google Scholar
  39. Posse S, Kemna LJ, Elghahwagi B, Wiese S, Kiselev VG (2001) Effect of graded hypo- and hypercapnia on fMRI contrast in visual cortex: quantification of T2* changes by multiecho EPI. Magn Reson Med 46:264–271
    Article Google Scholar
  40. Reimer P, Muller M, Marx C, Wiedermann D, Muller R, Rummeny EJ, Ebert W, Shamsi K, Peters PE (1998) T1 effects of a bolus-injectable superparamagnetic iron oxide, SH U 555 A: dependence on field strength and plasma concentration—preliminary clinical experience with dynamic T1-weighted MR imaging. Radiology 209:831–836
    CAS PubMed Google Scholar
  41. Huppertz A, Rohrer M (2004) Gadobutrol, a highly concentrated MR imaging contrast agent: its physicochemical characteristics and the basis for its use in contrast enhanced MR angiography and perfusion imaging. Eur Radiol Suppl 14(Suppl 5):M12–M18
    Article Google Scholar
  42. Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 37:293–301
    Google Scholar
  43. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R (1999) Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 19:701–735
    Article Google Scholar
  44. Martirosian P, Klose U, Mader I, Schick F (2004) FAIR True-FISP perfusion imaging of the kidneys. Magn Reson Med 51:353–361
    Article Google Scholar
  45. Kurhanewicz J, Swanson MG, Nelson SJ, Vigneron DB (2002) Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging 16:451–463
    Article Google Scholar
  46. Hasumi M, Suzuki K, Taketomi A, Matsui H, Yamamoto T, Ito K, Kurokawa K, Aoki J, Endo K, Yamanaka H (2003) The combination of multi-voxel MR spectroscopy with MR imaging improve the diagnostic accuracy for localization of prostate cancer. Anticancer Res 23:4223–4227
    Google Scholar
  47. Schmitt M, Feiweier T, Horger W, Krueger G, Schoen L, Lazar R, Kiefer B (2004) Improved uniformity of RF-distribution in clinical whole body—imaging at 3T by means of dielectric pads. In: Proceedings of the 12th annual meeting of ISMRM, p. 197
  48. Vaughan JT, Adriany G, Snyder CJ, Tian J, Thiel T, Bolinger L, Liu H, DelaBarre L, Ugurbil K (2004) Efficient high-frequency body coil for high-field MRI. Magn Reson Med 52:851–859
    Article Google Scholar
  49. Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J (2001) On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 13:105–114
    Google Scholar
  50. Kangarlu A, Shellock FG, Chakeres DW (2003) 8.0-Tesla human MR system: temperature changes associated with radiofrequency-induced heating of a head phantom. J Magn Reson Imaging 17:220–226
    Article Google Scholar
  51. Graf H, Lauer UA, Berger A, Schick F (2005) RF interactions with metallic instruments and implants get more prominent at 3 Tesla—an in-vitro study. Magn Reson Imaging (accepted for publication)
  52. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594
    Article Google Scholar
  53. Hattori N, Abe K, Sakoda S, Sawada T (2001) Proton MR spectroscopic study at 3 Tesla glutamate/glutamine in Alzheimer’s disease. NeuroReport 13:183–186
    Google Scholar
  54. Barker PB, Hearshen DO, Boska MD (2001) Single-voxel proton MRS of the human brain at 1.5T and 3.0T. Magn Reson Med 45:765–769
    Article Google Scholar
  55. Schubert F, Gallinat J, Seifert F, Rinneberg H (2004) Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla. NeuroImage 21:1762–1771
    Article Google Scholar
  56. Kim DS, Garwood M (2003) High-field magnetic resonance techniques for brain research. Curr Opin Neurobiol 13:612–619
    Article Google Scholar
  57. Hennig J, Speck O, Koch MA, Weiller C (2003) Functional magnetic resonance imaging: a review of methodological aspects and clinical applications. J Magn Reson Imaging 18:1–15
    Article Google Scholar
  58. Frayne R, Goodyear BG, Dickhoff P, Lauzon ML, Sevick RJ (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38:385–402
    Article Google Scholar
  59. Schwindt W, Kugel H, Bachmann R, Kloska S, Allkemper T, Maintz D, Pfleiderer B, Tombach B, Heindel W (2003) Magnetic resonance imaging protocols for examination of the neurocranium at 3T. Eur Radiol 13:2170–2179
    Article CAS PubMed Google Scholar
  60. Allkemper T, Schwindt W, Maintz D, Heindel W, Tombach B (2004) Sensitivity of T2-weighted FSE sequences towards physiological iron depositions in normal brains at 1.5 and 3.0 T. Eur Radiol 14:1000–1004
    Article PubMed Google Scholar

Download references