Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions (original) (raw)
Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG (2003) Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 161:41–54 ArticlePubMedCAS Google Scholar
Atamna H, Frey WH 2nd (2007) Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion 7:297–310 ArticlePubMedCAS Google Scholar
Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517 ArticlePubMedCAS Google Scholar
Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson‘s disease. Nat Neurosci 3:1301–1306 ArticlePubMedCAS Google Scholar
Betts J, Lightowlers RN, Turnbull DM (2004) Neuropathological aspects of mitochondrial DNA disease. Neurochem Res 29:505–511 ArticlePubMedCAS Google Scholar
Boveris A, Cadenas E (2000) Mitochondrial production of hydrogen peroxide: regulation by nitric oxide and the role of ubisemiquinone. IUBMB Life 50:245–250 ArticlePubMedCAS Google Scholar
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259 ArticlePubMedCAS Google Scholar
Cohen G, Farooqui R, Kesler N (1997) Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow. Proc Natl Acad Sci U S A 94:4890–4894 ArticlePubMedCAS Google Scholar
Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, McKee AC, Beal MF, Graham BH, Wallace DC (1994) Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics 23:471–476 ArticlePubMedCAS Google Scholar
Coskun PE, Beal MF, Wallace DC (2004) Alzheimer‘s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A 101:10726–10731 ArticlePubMedCAS Google Scholar
Cottrell DA, Blakely EL, Borthwick GM, Johnson MA, Taylor GA, Brierley EJ, Ince PG, Turnbull DM (2000) Role of mitochondrial DNA mutations in disease and aging. Ann N Y Acad Sci 908:199–207 ArticlePubMedCAS Google Scholar
Cottrell DA, Blakely EL, Johnson MA, Ince PG, Turnbull DM (2001) Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology 57:260–264 PubMedCAS Google Scholar
Cottrell DA, Borthwick GM, Johnson MA, Ince PG, Turnbull DM (2002) The role of cytochrome c oxidase deficient hippocampal neurones in Alzheimer‘s disease. Neuropathol Appl Neurobiol 28:390–396 ArticlePubMedCAS Google Scholar
Dodson MW, Guo M (2007) Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson‘s disease. Curr Opin Neurobiol 17:331–337 ArticlePubMedCAS Google Scholar
Fasano M, Bergamasco B, Lopiano L (2006) Modifications of the iron-neuromelanin system in Parkinson‘s disease. J Neurochem 96:909–916 ArticlePubMedCAS Google Scholar
Fornai F, Schluter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, Lazzeri G, Busceti CL, Pontarelli F, Battaglia G, Pellegrini A, Nicoletti F, Ruggieri S, Paparelli A, Sudhof TC (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci U S A 102:3413–3418 ArticlePubMedCAS Google Scholar
Fukui H, Diaz F, Garcia S, Moraes CT (2007) Cytochrome c oxidase deficiency in neurons decreases both oxidative stress and amyloid formation in a mouse model of Alzheimer‘s disease. Proc Natl Acad Sci U S A 104:14163–14168 ArticlePubMedCAS Google Scholar
Gluck M, Ehrhart J, Jayatilleke E, Zeevalk GD (2002) Inhibition of brain mitochondrial respiration by dopamine: involvement of H(2)O(2) and hydroxyl radicals but not glutathione-proteinmixed disulfides. J Neurochem 82:66–74 ArticlePubMedCAS Google Scholar
Greene JG, Dingledine R, Greenamyre JT (2005) Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiol Dis 18:19–31 ArticlePubMedCAS Google Scholar
Hamblet NS, Castora FJ (1997) Elevated levels of the Kearns-Sayre syndrome mitochondrial DNA deletion in temporal cortex of Alzheimer’s patients. Mutat Res 379:253–262 PubMedCAS Google Scholar
Hauptmann S, Keil U, Scherping I, Bonert A, Eckert A, Muller WE (2006) Mitochondrial dysfunction in sporadic and genetic Alzheimer’s disease. Exp Gerontol 41:668–673 ArticlePubMedCAS Google Scholar
He L, Chinnery PF, Durham SE, Blakely EL, Wardell TM, Borthwick GM, Taylor RW, Turnbull DM (2002) Detection and quantification of mitochondrial DNA deletions in individual cells by real-time PCR. Nucleic Acids Res 30:e68 ArticlePubMed Google Scholar
Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson‘s disease. Nature 334:345–348 ArticlePubMedCAS Google Scholar
Khan FH, Sen T, Maiti AK, Jana S, Chatterjee U, Chakrabarti S (2005) Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: implications for Parkinson‘s disease. Biochim Biophys Acta 1741:65–74 PubMed Google Scholar
Krishnan KJ, Bender A, Taylor RW, Turnbull DM (2007). A multiplex realtime PCR method to detect and quantify mitochondrial DNA deletions in individual cells. Anal Biochem 370:127–129 ArticlePubMedCAS Google Scholar
Krishnan KJ, Greaves LC, Reeve AK, Turnbull D (2007) The ageing mitochondrial genome. Nucleic Acids Res 35:7399–7405 ArticlePubMedCAS Google Scholar
Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795 ArticlePubMedCAS Google Scholar
Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer‘s disease. Science 304:448–452 ArticlePubMedCAS Google Scholar
Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer‘s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449 ArticlePubMedCAS Google Scholar
Manczak M, Park BS, Jung Y, Reddy PH (2004) Differential expression of oxidative phosphorylation genes in patients with Alzheimer‘s disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Med 5:147–162 ArticlePubMedCAS Google Scholar
Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073 ArticlePubMedCAS Google Scholar
Reddy PH (2007) Mitochondrial dysfunction in aging and Alzheimer‘s disease: strategies to protect neurons. Antioxid Redox Signal 9:1647–1658 ArticlePubMedCAS Google Scholar
Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson‘s disease. Lancet 1(8649):1269 ArticlePubMedCAS Google Scholar
Sciacco M, Bonilla E, Schon EA, Di- Mauro S, Moraes CT (1994) Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet 3:13–19 Neuropharmacology 40:927–936 ArticlePubMedCAS Google Scholar
Shamoto-Nagai M, Maruyama W, Yi H, Akao Y, Tribl F, Gerlach M, Osawa T, Riederer P, Naoi M (2006) Neuromelanin induces oxidative stress in mitochondria through release of iron: mechanism behind the inhibition of 26S proteasome. J Neural Transm 113:633–644 ArticlePubMedCAS Google Scholar
Werkman TR, Kruse CG, Nievelstein H, Long SK, Wadman WJ (2001) In vitro modulation of the firing rate of dopamine neurons in the rat substantia nigra pars compacta and the ventral tegmental area by antipsychotic drugs.