Epithelial mesenchymal transition traits in human breast cancer cell lines (original) (raw)
Duband JL, Monier F, Delannet M, Newgreen D (1995) Epithelium-mesenchyme transition during neural crest development. Acta Anat (Basel) 154(1):63–78 ArticleCAS Google Scholar
Prindull G, Zipori D (2004) Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood 103(8):2892–2899 ArticlePubMedCAS Google Scholar
Zavadil J, Bottinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24(37):5764–5774 ArticlePubMedCAS Google Scholar
Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558 ArticlePubMedCAS Google Scholar
Birchmeier W, Behrens J (1994) Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198(1):11–26 PubMedCAS Google Scholar
Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15(6):740–746 ArticlePubMedCAS Google Scholar
Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132(14):3151–3161 ArticlePubMedCAS Google Scholar
Przybylo JA, Radisky DC (2007) Matrix metalloproteinase-induced epithelial-mesenchymal transition: tumor progression at Snail’s pace. Int J Biochem Cell Biol 39(6):1082–1088 ArticlePubMedCAS Google Scholar
Thomson S, Buck E, Petti F et al (2005) Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 65(20):9455–9462 ArticlePubMedCAS Google Scholar
Tarin D, Thompson EW, Newgreen DF (2005) The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 65(14):5996–6000 discussion -1 ArticlePubMedCAS Google Scholar
Thompson EW, Newgreen DF, Tarin D (2005) Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res 65(14):5991–5995 discussion 5 ArticlePubMedCAS Google Scholar
Christiansen JJ, Rajasekaran AK (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66(17):8319–8326 ArticlePubMedCAS Google Scholar
Aigner K, Dampier B, Descovich L et al (2007) The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26(49):6979–6988 ArticlePubMedCAS Google Scholar
Hlubek F, Spaderna S, Schmalhofer O, Jung A, Kirchner T, Brabletz T (2007) Wnt/FZD signaling and colorectal cancer morphogenesis. Front Biosci 12:458–470 ArticlePubMedCAS Google Scholar
Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172(7):973–981 ArticlePubMedCAS Google Scholar
Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15(1):1–12 ArticlePubMedCAS Google Scholar
Zeisberg M, Kalluri R (2004) The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med 82(3):175–181 ArticlePubMed Google Scholar
Zeisberg M, Yang C, Martino M, Duncan M, Rieder F, Tanjore H, Kalluri R (2007) Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282(32):23337–23347 Google Scholar
Mercado-Pimentel ME, Runyan RB (2007) Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 185(1–3):146–156 ArticlePubMedCAS Google Scholar
Arciniegas E, Frid MG, Douglas IS, Stenmark KR (2007) Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 293(1):L1–L8 ArticlePubMedCAS Google Scholar
Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7(6):415–428 ArticlePubMedCAS Google Scholar
Thompson EW, Paik S, Brunner N et al (1992) Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150(3):534–544 ArticlePubMedCAS Google Scholar
Sommers CL, Heckford SE, Skerker JM, Worland P, Torri JA, Thompson EW, Byers SW, Gelmann EP (1992) Loss of epithelial markers and acquisition of vimentin expression in adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Res 52(19):5190–5197 PubMedCAS Google Scholar
Gilles C, Polette M, Zahm J, Tournier J, Volders L, Foidart J, Birembaut P (1999) Vimentin contributes to human mammary epithelial cell migration. J Cell Sci 112(Pt 24):4615–4625 PubMedCAS Google Scholar
Sommers CL, Byers SW, Thompson EW, Torri JA, Gelmann EP (1994) Differentiation state and invasiveness of human breast cancer cell lines. Breast Cancer Res Treat 31(2–3):325–335 ArticlePubMedCAS Google Scholar
Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ (1999) N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 147(3):631–644 ArticlePubMedCAS Google Scholar
Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA (2000) Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 148(4):779–790 ArticlePubMedCAS Google Scholar
Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M (2007) Vimentin and epithelial-mesenchymal transition in human breast cancer-observations in vitro and in vivo. Cells Tissues Organs 185(1–3):191–203 ArticlePubMedCAS Google Scholar
Hendrix MJ, Seftor EA, Seftor RE, Trevor KT (1997) Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion and increased invasive behavior. Am J Pathol 150(2):483–495 PubMedCAS Google Scholar
Jungert K, Buck A, von Wichert G, Adler G, Konig A, Buchholz M, Gress TM, Ellenrieder V (2007) Sp1 is required for transforming growth factor-beta-induced mesenchymal transition and migration in pancreatic cancer cells. Cancer Res 67(4):1563–1570 ArticlePubMedCAS Google Scholar
Vasko V, Espinosa AV, Scouten W et al (2007) Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA 104(8):2803–2808 ArticlePubMedCAS Google Scholar
Gilles C, Newgreen D, Sato H, Thompson EW (2004) Matrix Metalloproteases and epithelial-to mesenchymal transition: implications for carcinoma metastasis In: P Savagner (ed) Rise and fall of epithelial phenotype (webversion at www.eurekah.com). Landes Bioscience Publishers, Georgetown, TX, pp 297–315 Google Scholar
Giunciuglio D, Culty M, Fassina G et al (1995) Invasive phenotype of MCF10A cells overexpressing c-Ha-ras and c-erbB-2 oncogenes. Int J Cancer 63(6):815–822 ArticlePubMedCAS Google Scholar
Kim HJ, Litzenburger BC, Cui X et al (2007) Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol 27(8):3165–3175 ArticlePubMedCAS Google Scholar
Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H (2007) NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26(5):711–724 ArticlePubMedCAS Google Scholar
Li GC, Wang ZY (2006) Constitutive expression of RbAp46 induces epithelial-mesenchymal transition in mammary epithelial cells. Anticancer Res 26(5A):3555–3560 PubMedCAS Google Scholar
Perou CM, Jeffrey SS, van de Rijn M et al (1999) Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96(16):9212–9217 ArticlePubMedCAS Google Scholar
Thompson EW, Torri J, Sabol M et al (1994) Oncogene-induced basement membrane invasiveness in human mammary epithelial cells. Clin Exp Metastasis 12(3):181–194 ArticlePubMedCAS Google Scholar
Galliher AJ, Schiemann WP (2006) Beta3 integrin and Src facilitate transforming growth factor-beta mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Breast Cancer Res 8(4):R42 ArticlePubMed Google Scholar
Planas -Silva MD, Waltz PK (2007) Estrogen promotes reversible epithelial-to-mesenchymal-like transition and collective motility in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 104(1–2):11–21 ArticlePubMedCAS Google Scholar
Shtutman M, Levina E, Ohouo P, Baig M, Roninson IB (2006) Cell adhesion molecule L1 disrupts E-cadherin-containing adherens junctions and increases scattering and motility of MCF7 breast carcinoma cells. Cancer Res 66(23):11370–11380 ArticlePubMedCAS Google Scholar
Whitehead RH, Bertoncello I, Webber LM, Pedersen JS (1983) A new human breast carcinoma cell line (PMC42) with stem cell characteristics. I. Morphologic characterization. J Natl Cancer Inst 70(4):649–661 PubMedCAS Google Scholar
Whitehead RH, Monaghan P, Webber LM, Bertoncello I, Vitali AA (1983) A new human breast carcinoma cell line (PMC42) with stem cell characteristics. II. Characterization of cells growing as organoids. J Natl Cancer Inst 71(6):1193–1203 PubMedCAS Google Scholar
Whitehead RH, Quirk SJ, Vitali AA, Funder JW, Sutherland RL, Murphy LC (1984) A new human breast carcinoma cell line (PMC42) with stem cell characteristics. III. Hormone receptor status and responsiveness. J Natl Cancer Inst 73(3):643–648 PubMedCAS Google Scholar
Hugo, Ackland ML, Lawrence MG, Clements JA, Williams ED, Thompson EW (2007) Epithelial––mesenchymal and mesenchymal––epithelial transitions in carcinoma progression. J Cell Physiol 213(2):374–383
Ackland ML, Michalczyk A, Whitehead RH (2001) PMC42, A novel model for the differentiated human breast. Exp Cell Res 263(1):14–22 ArticlePubMedCAS Google Scholar
Lebret SC, Newgreen DF, Waltham MC, Price JT, Thompson EW, Ackland ML (2006) Myoepithelial molecular markers in human breast carcinoma PMC42-LA cells are induced by extracellular matrix and stromal cells. In vitro Cell Dev Biol Anim 42(10):298–307 PubMedCAS Google Scholar
Ackland ML, Newgreen D, Price JT, Fridman M, Waltham M, Arvanitis A, Minichiello J, Thompson EW (2003) Epidermal growth factor stimulates epithelio-mesenchymal transition in the stable human breast carcinoma cell line variant PMC42-LA. Lab Invest 83(3):435–448 PubMedCAS Google Scholar
Lebret SC, Newgreen DF, Thompson EW, Ackland ML (2007) Induction of epithelial to mesenchymal transition in PMC42-LA human breast carcinoma cells by carcinoma-associated fibroblast secreted factors. Breast Cancer Res 9(1):R19 ArticlePubMed Google Scholar
Thiery JP (2002) Epithelial to mesenchymal transitions in tumour progression. Nature Cancer 2:442–454 ArticleCAS Google Scholar
Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED (2006) Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66(23):11271–11278 ArticlePubMedCAS Google Scholar
Chaffer CL, Dopheide B, McCulloch DR, Lee AB, Moseley JM, Thompson EW, Williams ED (2005) Upregulated MT1-MMP/TIMP-2 axis in the TSU-Pr1-B1/B2 model of metastatic progression in transitional cell carcinoma of the bladder. Clin Exp Metastasis 22(2):115–125 ArticlePubMedCAS Google Scholar
Come C, Magnino F, Bibeau F, De Santa Barbara P, Becker KF, Theillet C, Savagner P (2006) Snail and slug play distinct roles during breast carcinoma progression. Clin Cancer Res 12(18):5395–5402 ArticlePubMedCAS Google Scholar
Ross DT, Scherf U, Eisen MB et al (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24(3):227–235 ArticlePubMedCAS Google Scholar
Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD (2007) MDA-MB-435 cells are derived from M14 Melanoma cells–a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104(1):13–19 ArticlePubMed Google Scholar
Zajchowski DA, Bartholdi MF, Gong Y et al (2001) Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res 61(13):5168–5178 PubMedCAS Google Scholar
Lacroix M, Leclercq G (2004) Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 83(3):249–289 ArticlePubMedCAS Google Scholar
Lombaerts M, van Wezel T, Philippo K et al (2006) E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br J Cancer 94(5):661–671 PubMedCAS Google Scholar
Charafe-Jauffret E, Ginestier C, Monville F et al (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25(15):2273–2284 ArticlePubMedCAS Google Scholar
Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–577 ArticlePubMedCAS Google Scholar
El Ghouzzi V, Legeai-Mallet L, Aresta S, Benoist C, Munnich A, de Gunzburg J, Bonaventure J (2000) Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location. Hum Mol Genet 9(5):813–819 ArticlePubMedCAS Google Scholar
Chen B, Lim RW (1997) Physical and functional interactions between the transcriptional inhibitors Id3 and ITF-2b. Evidence toward a novel mechanism regulating muscle-specific gene expression. J Biol Chem 272(4):2459–2463 ArticlePubMedCAS Google Scholar
Maira SM, Wurtz JM, Wasylyk B (1996) Net (ERP/SAP2) one of the Ras-inducible TCFs, has a novel inhibitory domain with resemblance to the helix-loop-helix motif. Embo J 15(21):5849–5865 PubMedCAS Google Scholar
Brabletz T, Jung A, Hermann K, Gunther K, Hohenberger W, Kirchner T (1998) Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract 194(10):701–704 PubMedCAS Google Scholar
Gilles C, Thompson EW (1996) The epithelial to mesenchymal transition and metastatic progression in carcinoma. The Brea J 2:83–96 Article Google Scholar
Korsching E, Packeisen J, Liedtke C et al (2005) The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol 206(4):451–457 ArticlePubMedCAS Google Scholar
Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, Nieto MA (2002) Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21(20):3241–3246 ArticlePubMedCAS Google Scholar
Cheng CW, Wu PE, Yu JC, Huang CS, Yue CT, Wu CW, Shen CY (2001) Mechanisms of inactivation of E-cadherin in breast carcinoma: modification of the two-hit hypothesis of tumor suppressor gene. Oncogene 20(29):3814–3823 ArticlePubMedCAS Google Scholar
Elloul S, Elstrand MB, Nesland JM, Trope CG, Kvalheim G, Goldberg I, Reich R, Davidson B (2005) Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 103(8):1631–1643 ArticlePubMedCAS Google Scholar
Moody SE, Perez D, Pan TC et al (2005) The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8(3):197–209 ArticlePubMedCAS Google Scholar
Martin TA, Goyal A, Watkins G, Jiang WG (2005) Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 12(6):488–496 ArticlePubMed Google Scholar
Come C, Arnoux V, Bibeau F, Savagner P (2004) Roles of the transcription factors snail and slug during mammary morphogenesis and breast carcinoma progression. J Mammary Gland Biol Neoplasia 9(2):183–193 ArticlePubMed Google Scholar
Mironchik Y, Winnard PT Jr., Vesuna F et al (2005) Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res 65(23):10801–10809 ArticlePubMedCAS Google Scholar
Aigner K, Descovich L, Mikula M et al (2007) The transcription factor ZEB1 (deltaEF1) represses Plakophilin 3 during human cancer progression. FEBS Lett 581(8):1617–1624 ArticlePubMedCAS Google Scholar
Turashvili G, Bouchal J, Baumforth K et al (2007) Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 7:55 ArticlePubMed Google Scholar
Dupont VN, Gentien D, Oberkampf M, De Rycke Y, Blin N (2007) A gene expression signature associated with metastatic cells in effusions of breast carcinoma patients. Int J Cancer 121(5):1036–1046 ArticlePubMedCAS Google Scholar
Wu X, Chen H, Parker B, Rubin E, Zhu T, Lee JS, Argani P, Sukumar S (2006) HOXB7, a homeodomain protein, is overexpressed in breast cancer and confers epithelial-mesenchymal transition. Cancer Res 66(19):9527–9534 ArticlePubMedCAS Google Scholar
Castro Alves C, Rosivatz E, Schott C, Hollweck R, Becker I, Sarbia M, Carneiro F, Becker KF (2007) Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin. J Pathol 211(5):507–515 ArticlePubMedCAS Google Scholar
Alonso SR, Tracey L, Ortiz P et al (2007) A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Res 67(7):3450–3460 ArticlePubMedCAS Google Scholar
Chung CH, Parker JS, Ely K et al (2006) Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-{kappa}B signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res 66(16):8210–8218 ArticlePubMedCAS Google Scholar
Yuen HF, Chua CW, Chan YP, Wong YC, Wang X, Chan KW (2007) Significance of TWIST and E-cadherin expression in the metastatic progression of prostatic cancer. Histopathology 50(5):648–658 ArticlePubMed Google Scholar
Uchikado Y, Natsugoe S, Okumura H, Setoyama T, Matsumoto M, Ishigami S, Aikou T (2005) Slug Expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res 11(3):1174–1180 PubMedCAS Google Scholar
Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL, Cheresh DA, Karin M (2007) Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature 446(7136):690–694 ArticlePubMedCAS Google Scholar
Horikawa T, Yang J, Kondo S, Yoshizaki T, Joab I, Furukawa M, Pagano JS (2007) Twist and epithelial-mesenchymal transition are induced by the EBV oncoprotein latent membrane protein 1 and are associated with metastatic nasopharyngeal carcinoma. Cancer Res 67(5):1970–1978 ArticlePubMedCAS Google Scholar
Lee TK, Poon RT, Yuen AP et al (2006) Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res 12(18):5369–5376 ArticlePubMedCAS Google Scholar
Finn RS, Dering J, Ginther C, Wilson CA, Glaspy P, Tchekmedyian N, Slamon DJ (2007) Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/”triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res Treat 105(3):319–326 Google Scholar
Buck E, Eyzaguirre A, Barr S et al (2007) Loss of homotypic cell adhesion by epithelial-mesenchymal transition or mutation limits sensitivity to epidermal growth factor receptor inhibition. Mol Cancer Ther 6(2):532–541 ArticlePubMedCAS Google Scholar
Yang AD, Fan F, Camp ER et al (2006) Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res 12(14 Pt 1):4147–4153 ArticlePubMedCAS Google Scholar
Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752 ArticlePubMedCAS Google Scholar
Ross DT, Perou CM (2001) A comparison of gene expression signatures from breast tumors and breast tissue derived cell lines. Dis Markers 17(2):99–109 PubMedCAS Google Scholar
Kenny PA, Lee GY, Myers CA et al (2007) The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 1:84–96 ArticlePubMedCAS Google Scholar
Hugo, Ackland ML, Lawrence MG, Clements JA, Williams ED, Thompson EW (2007) Epithelial—mesenchymal and mesenchymal—epithelial transitions in carcinoma progression. J Cell Physiol 213(2):374–383
Thompson EW, Waltham M, Ramus SJ, Hutchins AM, Armes JE, Campbell IG, Williams ED, Thompson PR, Rae JM, Johnson MD, Clarke R (2004) LCC15-MB cells are MDA-MB-435: a review of misidentified breast and prostate cell lines. Clin Exp Metastasis 21(6):535–541 ArticlePubMedCAS Google Scholar
Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7(6):1267–1278 ArticlePubMedCAS Google Scholar
Bindels S, Mestdagt M, Vandewalle C, Jacobs N, Volders L, Noel A, van Roy F, Berx G, Foidart JM, Gilles C (2006) Regulation of vimentin by SIP1 in human epithelial breast tumor cells. Oncogene 25(36):4975–4985 ArticlePubMedCAS Google Scholar
Espineda CE, Chang JH, Twiss J, Rajasekaran SA, Rajasekaran AK (2004) Repression of Na, K-ATPase beta1-subunit by the transcription factor snail in carcinoma. Mol Biol Cell 15(3):1364-1373 ArticlePubMedCAS Google Scholar
Okubo T, Truong TK, Yu B, Itoh T, Zhao J, Grube B, Zhou D, Chen S (2001) Down-regulation of promoter 1.3 activity of the human aromatase gene in breast tissue by zinc-finger protein, snail (SnaH). Cancer Res 61(4):1338–1346 PubMedCAS Google Scholar
Rennstam K, Jonsson G, Tanner M, Bendahl PO, Staaf J, Kapanen AI, Karhu R, Baldetorp B, Borg A, Isola J (2007) Cytogenetic characterization and gene expression profiling of the trastuzumab-resistant breast cancer cell line JIMT-1. Cancer Genet Cytogenet 172(2):95–106 ArticlePubMedCAS Google Scholar