Mammary Gland Macrophages: Pleiotropic Functions in Mammary Development (original) (raw)
Gouon-Evans V, Lin EY, Pollard JW. Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res 2002;4(4): 155–64. ArticlePubMed Google Scholar
Monks J, Geske FJ, Lehman L, Fadok VA. Do inflammatory cells participate in mammary gland involution? J Mammary Gland Biol Neoplasia 2002;7(2):163–76. ArticlePubMed Google Scholar
Lin EY, Gouon-Evans V, Nguyen AV, Pollard JW. The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia 2002;7(2):147–62. ArticlePubMed Google Scholar
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002;23(11):549–55. ArticleCASPubMed Google Scholar
Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004;351(27):2817–26. ArticleCASPubMed Google Scholar
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004;25(12):677–86. ArticleCASPubMed Google Scholar
Raes G, Van den Bergh R, De Baetselier P, Ghassabeh GH, Scotton C, Locati M, et al. Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J Immunol 2005;174(11):6561 (author reply 6561–2). CASPubMed Google Scholar
Rauh MJ, Ho V, Pereira C, Sham A, Sly LM, Lam V, et al. SHIP represses the generation of alternatively activated macrophages. Immunity 2005;23(4):361–74. ArticleCASPubMed Google Scholar
Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 2005;65(8): 3437–46. CASPubMed Google Scholar
Kim TW, Moon HB, Kim SJ. Interleukin-10 is up-regulated by prolactin and serum-starvation in cultured mammary epithelial cells. Mol Cells 2003;16(2):168–72. CASPubMed Google Scholar
Serra R, Crowley MR. Mouse models of transforming growth factor {beta} impact in breast development and cancer. Endocr Relat Cancer 2005;12(4):749–60. ArticleCASPubMed Google Scholar
Hume DA, Perry VH, Gordon S. Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J Cell Biol 1983;97(1):253–7. ArticleCASPubMed Google Scholar
Cecchini MG, Dominguez MG, Mocci S, Wetterwald A, Felix R, Fleisch H, et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 1994;120(6): 1357–72. CASPubMed Google Scholar
Ryan GR, Dai XM, Dominguez MG, Tong W, Chuan F, Chisholm O, et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood 2001;98(1):74–84. ArticleCASPubMed Google Scholar
Coelho AL, Hogaboam CM, Kunkel SL. Chemokines provide the sustained inflammatory bridge between innate and acquired immunity. Cytokine Growth Factor Rev 2005;16(6):553–60. ArticleCASPubMed Google Scholar
Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003;19(1):71–82. ArticleCASPubMed Google Scholar
Zafiropoulos A, Crikas N, Passam AM, Spandidos DA. Significant involvement of CCR2-64I and CXCL12-3a in the development of sporadic breast cancer. J Med Genet 2004;41(5):e59. ArticleCASPubMed Google Scholar
Tang G, Charo DN, Wang R, Charo IF, Messina L. CCR2-/- knockout mice revascularize normally in response to severe hindlimb ischemia. J Vasc Surg 2004;40(4):786–95. ArticlePubMed Google Scholar
Pollard JW. Role of colony-stimulating factor-1 in reproduction and development. Mol Reprod Dev 1997;46(1):54–60 (discussion 60–1). ArticleCASPubMed Google Scholar
van Rooijen N, van Kesteren-Hendrikx E. Clodronate liposomes: perspectives in research and therapeutics. J Liposome Res 2002;12(1)–2:81–94. ArticlePubMed Google Scholar
Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 2002;99(1):111–20. ArticleCASPubMed Google Scholar
Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci USA 1994;91(20):9312–6. ArticleCASPubMed Google Scholar
Burnett SH, Kershen EJ, Zhang J, Zeng L, Straley SC, Kaplan AM, et al. Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. J Leukoc Biol 2004;75(4): 612–23. ArticleCASPubMed Google Scholar
Philipovskiy AV, Cowan C, Wulff-Strobel CR, Burnett SH, Kerschen EJ, Cohen DA, et al. Antibody against V antigen prevents Yop-dependent growth of Yersinia pestis. Infect Immun 2005;73(3):1532–42. ArticleCASPubMed Google Scholar
Qualls JE, Kaplan AM, van Rooijen N, Cohen DA. Suppression of experimental colitis by intestinal mononuclear phagocytes. J Leukoc Biol 2006;80(4):802–15. ArticleCASPubMed Google Scholar
Burnett SH, Beus BJ, Avdiushko R, Qualls JE, Kaplan AM, Cohen DA. Development of peritoneal adhesions in macrophage depleted mice. J Surg Res 2006;131(2):296–301. ArticleCASPubMed Google Scholar
Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005;115(1):56–65. ArticleCASPubMed Google Scholar
Ferron M, Vacher J. Targeted expression of Cre recombinase in macrophages and osteoclasts in transgenic mice. Genesis 2005;41(3):138–45. ArticleCASPubMed Google Scholar
Van Nguyen A, Pollard JW. Colony stimulating factor-1 is required to recruit macrophages into the mammary gland to facilitate mammary ductal outgrowth. Dev Biol 2002;247(1):11–25. ArticleCAS Google Scholar
Pull SL, Doherty JM, Mills JC, Gordon JI, Stappenbeck TS. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci USA 2005;102(1):99–104. ArticleCASPubMed Google Scholar
Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004;432(7015):324–31. ArticleCASPubMed Google Scholar
Kenney NJ, Smith GH, Lawrence E, Barrett JC, Salomon DS. Identification of stem cell units in the terminal end bud and duct of the mouse mammary gland. J Biomed Biotechnol 2001;1(3): 133–143. ArticleCASPubMed Google Scholar
Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 2004;64(19):7022–9. ArticleCASPubMed Google Scholar
Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 2005;65(12):5278–83. ArticleCASPubMed Google Scholar
Watters JJ, Schartner JM, Badie B. Microglia function in brain tumors. J Neurosci Res 2005;81(3):447–55. ArticleCASPubMed Google Scholar
Platten M, Kretz A, Naumann U, Aulwurm S, Egashira K, Isenmann S, et al. Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 2003;54(3):388–92. ArticleCASPubMed Google Scholar
Briers TW, Desmaretz C, Vanmechelen E. Generation and characterization of mouse microglial cell lines. J Neuroimmunol 1994;52(2):153–64. ArticleCASPubMed Google Scholar
Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H, et al. Amplification and overexpression of the EGF receptor gene in primary human glioblastomas. J Cell Sci Suppl 1985;3: 161–72. CASPubMed Google Scholar
Prahl M, Nederman T, Carlsson J, Sjodin L. Binding of epidermal growth factor (EGF) to a cultured human glioma cell line. J Recept Res 1991;11(5):791–812. CASPubMed Google Scholar
Schwertfeger KL, Xian W, Kaplan AM, Burnett SH, Cohen DA, Rosen JM. A critical role for the inflammatory response in a mouse model of preneoplastic progression. Cancer Res 2006;66(11):5676–85. ArticleCASPubMed Google Scholar
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112(12):1796–808. ArticleCASPubMed Google Scholar
Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 2005;115(5):911–9 (quiz 920). ArticleCASPubMed Google Scholar
Trayhurn P, Wood IS. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans 2005;33(Pt 5):1078–81. CASPubMed Google Scholar
Maffei M, Fei H, Lee GH, Dani C, Leroy P, Zhang Y, et al. Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc Natl Acad Sci USA 1995;92(15):6957–60. ArticleCASPubMed Google Scholar
Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995;270(45):26746–9. ArticleCASPubMed Google Scholar
Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun 1996;221(2): 286–9. ArticleCASPubMed Google Scholar
Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005;46(11):2347–55. ArticleCASPubMed Google Scholar
Wei S, Lightwood D, Ladyman H, Cross S, Neale H, Griffiths M, et al. Modulation of CSF-1-regulated post-natal development with anti-CSF-1 antibody. Immunobiology 2005;210(2–4):109–19. ArticleCASPubMed Google Scholar
Couldrey C, Moitra J, Vinson C, Anver M, Nagashima K, Green J. Adipose tissue: a vital in vivo role in mammary gland development but not differentiation. Dev Dyn 2002;223(4):459–68. ArticlePubMed Google Scholar
Hu X, Juneja SC, Maihle NJ, Cleary MP. Leptin—a growth factor in normal and malignant breast cells and for normal mammary gland development. J Natl Cancer Inst 2002;94(22):1704–11. CASPubMed Google Scholar
Yu JL, Rak JW. Host microenvironment in breast cancer development: inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Cancer Res 2003;5(2):83–8. ArticleCASPubMed Google Scholar
Crowther M, Brown NJ, Bishop ET, Lewis CE. Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J Leukoc Biol 2001;70(4):478–90. CASPubMed Google Scholar
Albini A, Tosetti F, Benelli R, Noonan DM. Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res 2005;65(23):10637–41. ArticleCASPubMed Google Scholar
Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 2002;196(3):254–65. ArticleCASPubMed Google Scholar
Lewis C, Murdoch C. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol 2005;167(3):627–35. CASPubMed Google Scholar
Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000;2(10):737–44. ArticleCASPubMed Google Scholar
Giraudo E, Inoue M, Hanahan D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 2004;114(5):623–33. ArticleCASPubMed Google Scholar
De Palma M, Venneri MA, Galli R, Sergi LS, Politi LS, Sampaolesi M, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005;8(3):211–26. ArticlePubMedCAS Google Scholar
Yamaguchi H, Wyckoff J, Condeelis J. Cell migration in tumors. Curr Opin Cell Biol 2005;17(5):559–64. ArticleCASPubMed Google Scholar
Hubbard NE, Lim D, Mukutmoni M, Cai A, Erickson KL. Expression and regulation of murine macrophage angiopoietin-2. Cell Immunol 2005;234(2):102–9. ArticleCASPubMed Google Scholar
Kovacs EJ, DiPietro LA. Fibrogenic cytokines and connective tissue production. Faseb J 1994;8(11):854–61. CASPubMed Google Scholar
Djonov V, Andres AC, Ziemiecki A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc Res Tech 2001;52(2):182–9. ArticleCASPubMed Google Scholar
Wiseman BS, Sternlicht MD, Lund LR, Alexander CM, Mott J, Bissell MJ, et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol 2003;162(6):1123–33. ArticleCASPubMed Google Scholar
DiPietro LA, Polverini PJ. Angiogenic macrophages produce the angiogenic inhibitor thrombospondin 1. Am J Pathol 1993;143(3):678–84. CASPubMed Google Scholar
Reed MJ, Puolakkainen P, Lane TF, Dickerson D, Bornstein P, Sage EH. Differential expression of SPARC and thrombospondin 1 in wound repair: immunolocalization and in situ hybridization. J Histochem Cytochem 1993;41(10):1467–77. CASPubMed Google Scholar
Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J Leukoc Biol 1994;55(3):410–22. CASPubMed Google Scholar
Song E, Ouyang N, Horbelt M, Antus B, Wang M, Exton MS. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol 2000;204(1):19–28. ArticleCASPubMed Google Scholar
Park JE, Barbul A. Understanding the role of immune regulation in wound healing. Am J Surg 2004;187(5A):11S–16S. ArticleCASPubMed Google Scholar
Green KA, Lund LR. ECM degrading proteases and tissue remodeling in the mammary gland. BioEssays 2005;27:894–903. ArticleCASPubMed Google Scholar