- Hanahan, D. & Weinberg, R. The hallmarks of cancer. Cell 100, 57–70 (2000).
Article CAS Google Scholar
- Folkman, J. Tumour angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).
Article CAS Google Scholar
- Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumourigenesis. Cell 86, 353–364 (1996).
Article CAS Google Scholar
- Bouck, N., Stellmach, V. & Hsu, S. C. How tumours become angiogenic. Adv. Cancer Res. 69, 135–174 (1996).
Article CAS Google Scholar
- Hanahan, D. Heritable formation of pancreatic β-cell tumours in transgenic mice harboring recombinant insulin/simian virus 40 oncogenes. Nature 315, 115–122 (1985).
Article CAS Google Scholar
- Folkman, J., Watson, K., Ingber, D. & Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61 (1989).
Article CAS Google Scholar
- Dvorak, H. F., Nagy, J. A., Feng, D., Brown, L. F. & Dvorak, A. M. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr. Top. Microbiol. Immunol. 237, 97–132 (1999).
CAS PubMed Google Scholar
- Kerbel, R. S., Viloria-Petit, A., Okada, F. & Rak, J. Establishing a link between oncogenes and tumour angiogenesis. Mol. Med. 4, 286–295 (1998).
Article CAS Google Scholar
- Faller, D. V. Endothelial cell responses to hypoxic stress. Clin. Exp. Pharmacol. Physiol. 26, 74–84 (1999).
Article CAS Google Scholar
- Hanahan, D., Christofori, G., Naik, P. & Arbeit, J. Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur. J. Cancer 32A, 2386–2393 (1996).
Article CAS Google Scholar
- Christofori, G., Naik, P. & Hanahan, D. Vascular endothelial growth factor and its receptors, flt-1 and flk-1, are expressed in normal pancreatic islets and throughout islet cell tumourigenesis. Mol. Endocrinol. 9, 1760–1770 (1995).
CAS PubMed Google Scholar
- Roberts W. G. & Palade, G. E. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res. 57, 765–72 (1997).
CAS PubMed Google Scholar
- Vajkoczy, P. et al. Inhibition of tumour growth, angiogenesis, and microcirculation by the novel flk-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy. Neoplasia 1, 31–41 (1999).
Article CAS Google Scholar
- Brekken, R. A., Huang, X., King, S. W. & Thorpe, P. E. Vascular endothelial growth factor as a marker of tumour endothelium. Cancer Res. 58, 1952–1959 (1998).
CAS PubMed Google Scholar
- Cheng, S. Y., Nagane, M., Huang, H. S. & Cavenee, W. K. Intracerebral tumour-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF121 and VEGF165 but not VEGF189. Proc. Natl Acad. Sci. USA 94, 12081–12087 (1997).
Article CAS Google Scholar
- Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).
Article CAS Google Scholar
- Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).
Article CAS Google Scholar
- O'Reilly, M. S., Widerschain, D., Stetler-Stevenson, W. G., Folkman, J. & Moses, M. A. Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J. Biol. Chem. 274, 29568–29571 (1999).
Article CAS Google Scholar
- Talbot, D. C. & Brown, P. D. Experimental and clinical studies on the use of matrix metalloprotease inhibitors for the treatment of cancer. Eur. J. Cancer 32A, 2528–2533. (1996).
Article CAS Google Scholar
- Brown, P. D. Clinical studies with matrix metalloprotease inhibitors. Acta Pathologica Microbiologica et Immunologica Sacndinavica 107, 174–80 (1999).
Article CAS Google Scholar
- Tamaki, K. et al. Synthesis and structure–activity relationships of gelatinase inhibitors derived from matlystatins. Chem. Pharmaceut. Bull. 43, 1883–1893 (1995).
Article CAS Google Scholar
- Bergers, G., Javaherian, K., Lo, K-M., Folkman, J. & Hanahan, D. Differential effects of angiogenesis inhibitors on distinct stages of carcinogenesis. Science 284, 808–812 (1999).
Article CAS Google Scholar
- Vu, T.H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422 (1998).
Article CAS Google Scholar
- Itoh, T. et al. Unaltered secretion of beta-amyloid precursor protein in gelatinase A (matrix metalloprotease 2)-deficient mice. J. Biol. Chem. 272, 22389–22392 (1997).
Article CAS Google Scholar
- Itoh, T. et al. Reduced angiogenesis and tumour progression in gelatinase A-deficient mice. Cancer Res. 58, 1048–1051 (1998).
CAS PubMed Google Scholar
- Carmeliet, P. et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nature Gen. 17, 439–444 (1997).
Article CAS Google Scholar
- Vlodavsky, I. et al. Extracellular matrix-resident growth factors and enzymes: possible involvement in tumour metastasis and angiogenesis. Cancer Metastasis Rev., 9, 203–226 (1990).
Article CAS Google Scholar
- Hulett, M. D. et al. Cloning of mammalian heparanase, an important enzyme in tumour invasion and metastasis. Nature Med. 7, 803–809 (1999).
Article Google Scholar
- Vlodavsky, I. et al. Mammalian heparanase: gene cloning, expression and function in tumour progression and metastasis. Nature Med. 7, 793–802 (1999).
Article Google Scholar
- Coussens, L. M. et al. Inflammatory mast cells upregulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13, 1382–1397 (1999).
Article CAS Google Scholar
- Gerber, H-P. et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Med. 5, 623–628 (1999).
Article CAS Google Scholar
- Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell (in the press).
- Zucker, S. et al. Measurement of matrix metalloprotease and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications. Ann. NY Acad. Sci. 878, 212–227 (1999).
Article CAS Google Scholar
- Fang, J. et al. Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumour model. Proc. Natl Acad. Sci. USA 97, 3884–3889 (2000).
Article CAS Google Scholar
- Zhou, Z. et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc. Natl Acad. Sci. USA 97, 4052–4057 (2000).
Article CAS Google Scholar
- Yu, Q. & Stamenkovic, I. Cell surface-localized metalloproteinase-9 proteolyically activates TGF-beta and promotes tumour invasion and angiogenesis. Genes Dev. 14, 163–176 (2000).
PubMed PubMed Central Google Scholar
- Perl, A. K. et al. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392, 190–193 (1998).
Article CAS Google Scholar
- Behrendtsen, O., Alexander, C. M. & Werb, Z. Metalloproteinases mediate extracellular matrix degradation by cells from mouse blastocyst outgrowths. Development 114, 447–456 (1992).
CAS PubMed Google Scholar
- Naik, P., Karrim, J. & Hanahan, D. The rise and fall of apoptosis during multistage tumourigenesis: downmodulation contributes to progression from angiogenic progenitors. Genes Dev. 10, 2105–2116 (1996).
Article CAS Google Scholar
- Herron, G. S., Werb, Z., Dwyer, K. & Banda, M. J. Secretion of metalloproteinases by stimulated capillary endothelial cells. I. Production of procollagenases and prostromelysin exceeds expression of proteolytic activity. J. Biol. Chem. 261, 2810–2813 (1986).
CAS PubMed Google Scholar
- Herron, G. S., Banda, M. J., Clark, E. J., Gavrilovic, J. & Werb, Z. Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. J. Biol. Chem. 261, 2814–2818 (1986).
CAS PubMed Google Scholar
- Talhouk, R. S., Chin, J. R., Unemori, E. N., Werb, Z. & Bissell, M. J. Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development 112, 439–449 (1991).
CAS PubMed PubMed Central Google Scholar
- Parangi, S., Dietrich, W., Christofori, G., Lander, E. S. & Hanahan, D. Tumour suppressor loci on mouse chromosomes 9 and 16 are lost at distinct stages of tumourigenesis in a transgenic model of islet cell carcinoma. Cancer Res. 55, 6071–6076 (1995).
CAS PubMed Google Scholar