Composition of cecal bile acids in ex-germfree mice inoculated with human intestinal bacteria (original) (raw)
References
Narisawa, T., Magadia, N.E., Weisburger, J.H., and Wynder, E.L. (1974) Promoting Effect of Bile Acids on Colon Carcinogenesis After Intrarectal Instillation of _N_-Methyl-_N'_-nitro-_N_-nitrosoguanidine in Rats, J. Natl. Cancer. Inst. 53, 1093–1097. PubMedCAS Google Scholar
Reddy, B.S., Watanabe, K., Weisburger, J.H., and Wynder, E.L. (1977) Promoting Effect of Bile Acids in Colon Carcinogenesis in Germ-free and Conventional F344 Rats, Cancer Res. 37, 3238–3242. PubMedCAS Google Scholar
Morotomi, M., Guillen, J.G., Legerfo, P., and Weinstein, I.B. (1990) Production of Diacylglycerol, an Activator of Protein Kinase C by Human Intestinal Microflora, Cancer Res. 50, 3595–3599. PubMedCAS Google Scholar
Stellwag, E.J., and Hylemon, P.B. (1976) Purification and Characterization of Bile Salt Hydrolase from Bacteroides fragilis subsp. fragilis, Biochim. Biophys. Acta 452, 165–176 PubMedCAS Google Scholar
Masuda, N. (1980) Deconjugation of Bile Salts by Bacteroides and Clostridium, Microbiol. Immunol. 25, 1–11. Google Scholar
Archer, R.H., Chong, R., and Maddox, I.S. (1982) Hydrolysis of Bile Acid Conjugates by Clostridium bifermentans, Eur. J. Appl. Microbiol. Biotechnol. 14, 41–45. ArticleCAS Google Scholar
Grill, J.-P., Schneider, F., Crociani, J., and Ballongue, J. (1995) Purification and Characterization of Conjugated Bile Salt Hydrolase from Bifidobacterium longum BB536, Appl. Environ. Microbiol. 61, 2577–2582. PubMedCAS Google Scholar
Bortolini, O., Medici, A., and Poli, S. (1997) Biotransformations on Steroid Nucleus of Bile Acids, Steroids 62, 564–577. ArticlePubMedCAS Google Scholar
Gustafsson, B.E., Midtvedt, T., and Norman, A. (1966) Isolated Fecal Microorganisms Capable of 7 α-Dehydroxylating Bile Acids, J. Exp. Med. 123, 413–432. ArticlePubMedCAS Google Scholar
Midtvedt, T. (1967) Properties of Anaerobic Gram-positive Rods Capable of 7 α-Dehydroxylating Bile Acids, Acta Path. Microbiol. Scand. 71, 147–160. Google Scholar
Aries, V., and Hill, M.J. (1970) Degradation of Steroids by Intestinal Bacteria. II. Enzymes Catalyzing the Oxidoreduction of the 3, α-, 7 α-, and 12 α-Hydroxyl Group, Biochim. Biophys. Acta 202, 535–543. PubMedCAS Google Scholar
Dickinson, A.B., Gustafsson, B.E., and Norman, A. (1971) Determination of Bile Acid Conversion Potencies of Intestinal Bacteria by Screening in Vitro and Subsequent Establishment in Germfree Rats, Acta Path. Microbiol. Scand. Sect. B 79, 691–698. CAS Google Scholar
Stellwag, E.J., and Hylemon, P.B. (1978) Characterization of 7 α-Dehydroxylase in Clostridium leptum, Am. J. Clin. Nutr. 31, 243–247. CAS Google Scholar
Ferrari, A., Pacini, N., and Canzi, E. (1980) A Note on Bile Acids Transformations by Strains of Bifidobacterium, J. Appl. Bacteriol. 49, 193–197. PubMedCAS Google Scholar
Hirano, S., Nakamura, R., Tamaki, M., Masuda, N., and Oda, H. (1981) Isolation and Characterization of Thirteen Intestinal Microorganisms Capable of 7 α-Dehydroxylating Bile Acid, Appl. Environ. Microbiol. 41, 737–745. PubMedCAS Google Scholar
Takahashi, T., and Morotomi, M. (1994) Absence of Cholic Acid 7 α-Dehydroxylase Activity in the Strains of Lactobacillus and Bifidobacterium, J. Dairy Sci. 77, 3275–3286. ArticlePubMedCAS Google Scholar
Hayakawa, S., and Hattori, T. (1970) 7 α-Dehydroxylation of Cholic Acid by Clostridium bifermentans Strain ATCC 9714 and Clostridium sordellii Strain NCIB 6929, FEBS Lett. 6, 131–133. ArticlePubMedCAS Google Scholar
Ferrari, A., and Beretta, L. (1977) Activity on Bile Acids of a Clostridium bifermentans Cell-free Extract, FEBS Lett., 75, 163–165. ArticlePubMedCAS Google Scholar
Stellwag, E.J., and Hylemon, P.B. (1979) 7 α-Dehydroxylation of Cholic Acid and Chenodeoxycholic Acid by Clostridium leptum, J. Lipid Res. 20, 325–333. PubMedCAS Google Scholar
Hylemon, P.B., Cacciapuoti, A.F., White, B.A., Whitehead, T.R., and Fricke, R.J. (1980) 7 α-Dehydroxylation of Cholic Acid by Cell Extracts of Eubacterium Species V.P.I. 12708, Am. J. Clin. Nutr. 33, 2507–2510. PubMedCAS Google Scholar
Archer, R.H., Maddox, I.S., and Chong, R. (1981) 7 α-Dehydroxylation of Cholic Acid by Clostridium bifermentans, Eur. J. Appl. Microbiol. Biotechnol. 12, 46–52. ArticleCAS Google Scholar
Takamine, F., and Imamura, T. (1995) Isolation and Characterization of Bile Acid 7-Dehydroxylating Bacteria from Human Feces, Microbiol. Immunol. 39, 11–18. PubMedCAS Google Scholar
Narushima, S., Itoh, K., Kuruma, K., and Uchida, K. (1999) Cecal Bile Acid Compositions in Gnotobiotic Mice Associated with Human Intestinal Bacteria with the Ability to Transform Bile Acids in Vitro, Microb. Ecol. Health Dis. 11, 55–60. Article Google Scholar
Narushima, S., Itoh, K., Takamine, F., and Uchida, K. (1999) Absence of Cecal Secondary Bile Acids in Gnotobiotic Mice Associated with Two Human Intestinal Bacteria with the Ability to Dehydroxylate Bile Acids in Vitro, Microbiol. Immunol., 43, 893–897. PubMedCAS Google Scholar
Itoh, K., Ozaki, A., and Yamamoto, T. (1978) An Autoclavable Stainless Steel Isolator for Small Scale Gnotobiotic Experiments, Exp. Anim. 27, 13–16. CAS Google Scholar
Mitsuoka, T., Sega, T., and Yamamoto, S. (1965) Eine Verbesserte Methodik der Qualitativen und Quantativen Analyse der Darmflora von Menschen und Tieren, Zentralbl. Bacteriol. Parasitenkd. Infektionskrankh. Hyg. I. Orig. A 195, 455–469. CAS Google Scholar
Itoh, K., and Mitsuoka, T. (1980) Production of Gnotobiotic Mice with Normal Physiological Functions. I. Selection of Useful Bacteria from Faeces of Conventional Mice, Z. Versuchstierkd. 22, 173–178. PubMedCAS Google Scholar
Goto, J., Hasegawa, M., Kato, H., and Nambara, T. (1978) A New Method for Simultaneous Determination of Bile Acids in Human Bile Without Hydrolysis, Clin. Chim. Acta. 87, 141–147. ArticlePubMedCAS Google Scholar
Okuyama, S., Kokubun, N., Higashidate, S. Uemura D. and Hirata, Y. (1979) A New Analytical Method of Individual Bile Acids Using High Performance Liquid Chromatography and Immobilized 3 α-Hydroxysteroid Dehydrogenase in Column Form, Chem. Lett. 1443–1446.
Mitsuoka, T., Ohno, K., Benno, Y., Suzuki, K., and Namba, K. (1976) Die Faekal-flora bei Menschen. IV. Mitteilung: Vergleich des Neuentwickelten Verfahrens mit dem Bisheringen Üblichen Verfahren zur Darmfloraanalyse, Zentralbl. Bacteriol. Parasitenkd. Infektionskrankh. Hyg. I. Orig. A. 234, 219–233. CAS Google Scholar
Ferrari, A., Padini, N., Canzi, E., and Bruno, F. (1980) Prevalence of Oxygen-Intolerant Microorganisms in Primary Bile Acid 7 α-Dehydroxylating Mouse Intestinal Microflora, Current Microbiol. 4, 257–260. CAS Google Scholar
Chikai, T., Nakao, H., and Uchida, K. (1987) Deconjugation of Bile Acids by Human Intestinal Bacteria Implanted in Germa-free Rats, Lipids 22, 669–671. PubMedCAS Google Scholar
Kawamoto, K., Horibe, I., and Uchida, K. (1989) Purification and Characterization of New Hydrolase for Conjugated Bile Acids, Chenodeoxycholyltaurine Hydrolase, from Bacteroides vulgatus, J. Biochem. 106, 1049–1053. PubMedCAS Google Scholar
Sacquet, E.C., Gadelle, D.P., Riottot, M.J., and Raibaud, P.M. (1984) Absence of Transformation of β-Muricholic Acid by Human Microflora Implanted in the Digestive Tracts of Germfree Male Rats, Appl. Environ. Microbiol. 47, 1167–1168. PubMedCAS Google Scholar
Itoh, K., Urano, T., and Mitsuoka, T. (1986) Colonization Resistance Against Pseudomonas aeruginosa in Gnotobiotic Mice, Lab. Anim. 20, 197–201. PubMedCAS Google Scholar
Koopman, J.P., and Janssen, F.G.J. (1975) The Suitability for Rats of an Intestinal Microflora of Mice Tested Under Practical Circumstances, Z. Versuchstierkd. 17, 208–211. PubMedCAS Google Scholar
Uchida, K., Satoh, T., Narushima, S., Itoh, K., Takase, H., Kuruma, K., Nakao, H., Yamaga, N., and Yamada, K. (1999) Transformation of Bile Acid and Sterols by Clostridia (fusiform bacteria) in Wistar Rats, Lipids 34, 269–273. PubMedCAS Google Scholar
Batta, A.K., Salen, G., Arora, R., Shefer, S., Batta, M., and Person, A. (1990) Side Chain Conjugation Prevents Bacterial 7-Dehydroxylation of Bile Acids, J. Biol. Chem. 256, 10925–10928. Google Scholar