Composition of cecal bile acids in ex-germfree mice inoculated with human intestinal bacteria (original) (raw)

References

  1. Narisawa, T., Magadia, N.E., Weisburger, J.H., and Wynder, E.L. (1974) Promoting Effect of Bile Acids on Colon Carcinogenesis After Intrarectal Instillation of _N_-Methyl-_N'_-nitro-_N_-nitrosoguanidine in Rats, J. Natl. Cancer. Inst. 53, 1093–1097.
    PubMed CAS Google Scholar
  2. Reddy, B.S., Watanabe, K., Weisburger, J.H., and Wynder, E.L. (1977) Promoting Effect of Bile Acids in Colon Carcinogenesis in Germ-free and Conventional F344 Rats, Cancer Res. 37, 3238–3242.
    PubMed CAS Google Scholar
  3. Morotomi, M., Guillen, J.G., Legerfo, P., and Weinstein, I.B. (1990) Production of Diacylglycerol, an Activator of Protein Kinase C by Human Intestinal Microflora, Cancer Res. 50, 3595–3599.
    PubMed CAS Google Scholar
  4. Stellwag, E.J., and Hylemon, P.B. (1976) Purification and Characterization of Bile Salt Hydrolase from Bacteroides fragilis subsp. fragilis, Biochim. Biophys. Acta 452, 165–176
    PubMed CAS Google Scholar
  5. Masuda, N. (1980) Deconjugation of Bile Salts by Bacteroides and Clostridium, Microbiol. Immunol. 25, 1–11.
    Google Scholar
  6. Archer, R.H., Chong, R., and Maddox, I.S. (1982) Hydrolysis of Bile Acid Conjugates by Clostridium bifermentans, Eur. J. Appl. Microbiol. Biotechnol. 14, 41–45.
    Article CAS Google Scholar
  7. Grill, J.-P., Schneider, F., Crociani, J., and Ballongue, J. (1995) Purification and Characterization of Conjugated Bile Salt Hydrolase from Bifidobacterium longum BB536, Appl. Environ. Microbiol. 61, 2577–2582.
    PubMed CAS Google Scholar
  8. Bortolini, O., Medici, A., and Poli, S. (1997) Biotransformations on Steroid Nucleus of Bile Acids, Steroids 62, 564–577.
    Article PubMed CAS Google Scholar
  9. Gustafsson, B.E., Midtvedt, T., and Norman, A. (1966) Isolated Fecal Microorganisms Capable of 7 α-Dehydroxylating Bile Acids, J. Exp. Med. 123, 413–432.
    Article PubMed CAS Google Scholar
  10. Midtvedt, T. (1967) Properties of Anaerobic Gram-positive Rods Capable of 7 α-Dehydroxylating Bile Acids, Acta Path. Microbiol. Scand. 71, 147–160.
    Google Scholar
  11. Aries, V., and Hill, M.J. (1970) Degradation of Steroids by Intestinal Bacteria. II. Enzymes Catalyzing the Oxidoreduction of the 3, α-, 7 α-, and 12 α-Hydroxyl Group, Biochim. Biophys. Acta 202, 535–543.
    PubMed CAS Google Scholar
  12. Dickinson, A.B., Gustafsson, B.E., and Norman, A. (1971) Determination of Bile Acid Conversion Potencies of Intestinal Bacteria by Screening in Vitro and Subsequent Establishment in Germfree Rats, Acta Path. Microbiol. Scand. Sect. B 79, 691–698.
    CAS Google Scholar
  13. Stellwag, E.J., and Hylemon, P.B. (1978) Characterization of 7 α-Dehydroxylase in Clostridium leptum, Am. J. Clin. Nutr. 31, 243–247.
    CAS Google Scholar
  14. Ferrari, A., Pacini, N., and Canzi, E. (1980) A Note on Bile Acids Transformations by Strains of Bifidobacterium, J. Appl. Bacteriol. 49, 193–197.
    PubMed CAS Google Scholar
  15. Hirano, S., Nakamura, R., Tamaki, M., Masuda, N., and Oda, H. (1981) Isolation and Characterization of Thirteen Intestinal Microorganisms Capable of 7 α-Dehydroxylating Bile Acid, Appl. Environ. Microbiol. 41, 737–745.
    PubMed CAS Google Scholar
  16. Takahashi, T., and Morotomi, M. (1994) Absence of Cholic Acid 7 α-Dehydroxylase Activity in the Strains of Lactobacillus and Bifidobacterium, J. Dairy Sci. 77, 3275–3286.
    Article PubMed CAS Google Scholar
  17. Hayakawa, S., and Hattori, T. (1970) 7 α-Dehydroxylation of Cholic Acid by Clostridium bifermentans Strain ATCC 9714 and Clostridium sordellii Strain NCIB 6929, FEBS Lett. 6, 131–133.
    Article PubMed CAS Google Scholar
  18. Ferrari, A., and Beretta, L. (1977) Activity on Bile Acids of a Clostridium bifermentans Cell-free Extract, FEBS Lett., 75, 163–165.
    Article PubMed CAS Google Scholar
  19. Stellwag, E.J., and Hylemon, P.B. (1979) 7 α-Dehydroxylation of Cholic Acid and Chenodeoxycholic Acid by Clostridium leptum, J. Lipid Res. 20, 325–333.
    PubMed CAS Google Scholar
  20. Hylemon, P.B., Cacciapuoti, A.F., White, B.A., Whitehead, T.R., and Fricke, R.J. (1980) 7 α-Dehydroxylation of Cholic Acid by Cell Extracts of Eubacterium Species V.P.I. 12708, Am. J. Clin. Nutr. 33, 2507–2510.
    PubMed CAS Google Scholar
  21. Archer, R.H., Maddox, I.S., and Chong, R. (1981) 7 α-Dehydroxylation of Cholic Acid by Clostridium bifermentans, Eur. J. Appl. Microbiol. Biotechnol. 12, 46–52.
    Article CAS Google Scholar
  22. Takamine, F., and Imamura, T. (1995) Isolation and Characterization of Bile Acid 7-Dehydroxylating Bacteria from Human Feces, Microbiol. Immunol. 39, 11–18.
    PubMed CAS Google Scholar
  23. Narushima, S., Itoh, K., Kuruma, K., and Uchida, K. (1999) Cecal Bile Acid Compositions in Gnotobiotic Mice Associated with Human Intestinal Bacteria with the Ability to Transform Bile Acids in Vitro, Microb. Ecol. Health Dis. 11, 55–60.
    Article Google Scholar
  24. Narushima, S., Itoh, K., Takamine, F., and Uchida, K. (1999) Absence of Cecal Secondary Bile Acids in Gnotobiotic Mice Associated with Two Human Intestinal Bacteria with the Ability to Dehydroxylate Bile Acids in Vitro, Microbiol. Immunol., 43, 893–897.
    PubMed CAS Google Scholar
  25. Itoh, K., Ozaki, A., and Yamamoto, T. (1978) An Autoclavable Stainless Steel Isolator for Small Scale Gnotobiotic Experiments, Exp. Anim. 27, 13–16.
    CAS Google Scholar
  26. Mitsuoka, T., Sega, T., and Yamamoto, S. (1965) Eine Verbesserte Methodik der Qualitativen und Quantativen Analyse der Darmflora von Menschen und Tieren, Zentralbl. Bacteriol. Parasitenkd. Infektionskrankh. Hyg. I. Orig. A 195, 455–469.
    CAS Google Scholar
  27. Itoh, K., and Mitsuoka, T. (1980) Production of Gnotobiotic Mice with Normal Physiological Functions. I. Selection of Useful Bacteria from Faeces of Conventional Mice, Z. Versuchstierkd. 22, 173–178.
    PubMed CAS Google Scholar
  28. Goto, J., Hasegawa, M., Kato, H., and Nambara, T. (1978) A New Method for Simultaneous Determination of Bile Acids in Human Bile Without Hydrolysis, Clin. Chim. Acta. 87, 141–147.
    Article PubMed CAS Google Scholar
  29. Okuyama, S., Kokubun, N., Higashidate, S. Uemura D. and Hirata, Y. (1979) A New Analytical Method of Individual Bile Acids Using High Performance Liquid Chromatography and Immobilized 3 α-Hydroxysteroid Dehydrogenase in Column Form, Chem. Lett. 1443–1446.
  30. Mitsuoka, T., Ohno, K., Benno, Y., Suzuki, K., and Namba, K. (1976) Die Faekal-flora bei Menschen. IV. Mitteilung: Vergleich des Neuentwickelten Verfahrens mit dem Bisheringen Üblichen Verfahren zur Darmfloraanalyse, Zentralbl. Bacteriol. Parasitenkd. Infektionskrankh. Hyg. I. Orig. A. 234, 219–233.
    CAS Google Scholar
  31. Ferrari, A., Padini, N., Canzi, E., and Bruno, F. (1980) Prevalence of Oxygen-Intolerant Microorganisms in Primary Bile Acid 7 α-Dehydroxylating Mouse Intestinal Microflora, Current Microbiol. 4, 257–260.
    CAS Google Scholar
  32. Chikai, T., Nakao, H., and Uchida, K. (1987) Deconjugation of Bile Acids by Human Intestinal Bacteria Implanted in Germa-free Rats, Lipids 22, 669–671.
    PubMed CAS Google Scholar
  33. Kawamoto, K., Horibe, I., and Uchida, K. (1989) Purification and Characterization of New Hydrolase for Conjugated Bile Acids, Chenodeoxycholyltaurine Hydrolase, from Bacteroides vulgatus, J. Biochem. 106, 1049–1053.
    PubMed CAS Google Scholar
  34. Sacquet, E.C., Gadelle, D.P., Riottot, M.J., and Raibaud, P.M. (1984) Absence of Transformation of β-Muricholic Acid by Human Microflora Implanted in the Digestive Tracts of Germfree Male Rats, Appl. Environ. Microbiol. 47, 1167–1168.
    PubMed CAS Google Scholar
  35. Itoh, K., Urano, T., and Mitsuoka, T. (1986) Colonization Resistance Against Pseudomonas aeruginosa in Gnotobiotic Mice, Lab. Anim. 20, 197–201.
    PubMed CAS Google Scholar
  36. Koopman, J.P., and Janssen, F.G.J. (1975) The Suitability for Rats of an Intestinal Microflora of Mice Tested Under Practical Circumstances, Z. Versuchstierkd. 17, 208–211.
    PubMed CAS Google Scholar
  37. Uchida, K., Satoh, T., Narushima, S., Itoh, K., Takase, H., Kuruma, K., Nakao, H., Yamaga, N., and Yamada, K. (1999) Transformation of Bile Acid and Sterols by Clostridia (fusiform bacteria) in Wistar Rats, Lipids 34, 269–273.
    PubMed CAS Google Scholar
  38. Batta, A.K., Salen, G., Arora, R., Shefer, S., Batta, M., and Person, A. (1990) Side Chain Conjugation Prevents Bacterial 7-Dehydroxylation of Bile Acids, J. Biol. Chem. 256, 10925–10928.
    Google Scholar

Download references