- Ahren B, Schmitz O (2004) GLP-1 receptor agonists and DPP-4 inhibitors in the treatment of type 2 diabetes. Horm Metab Res 36(11–12):867–876
Article CAS PubMed Google Scholar
- Bond A (2006) Exenatide (Byetta) as a novel treatment option for type 2 diabetes mellitus. PRO 19(3):281–284
Google Scholar
- Larsen PJ, Tang-Christensen M, Holst JJ, Orskov C (1997) Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 77(1):257–270
Article CAS PubMed Google Scholar
- Jin SL, Han VK, Simmons JG, Towle AC, Lauder JM, Lund PK (1988) Distribution of glucagonlike peptide I (GLP-I), glucagon, and glicentin in the rat brain: an immunocytochemical study. J Comp Neurol 271(4):519–532
Article CAS PubMed Google Scholar
- Holscher C (2014) Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinol 221(1):T31–T41
Article CAS PubMed Google Scholar
- Qin Z, Sun Z, Huang J, Hu Y, Wu Z, Mei B (2008) Mutated recombinant human glucagon-like peptide-1 protects SH-SY5Y cells from apoptosis induced by amyloid-beta peptide (1-42). Neurosci Lett 444(3):217–221
Article CAS PubMed Google Scholar
- Iwai T, Ito S, Tanimitsu K, Udagawa S, Oka J (2006) Glucagon-like peptide-1 inhibits LPS-induced IL-1beta production in cultured rat astrocytes. Neurosci Res 55(4):352–360
Article CAS PubMed Google Scholar
- Kumar G, Iadav RS (2012) Induction of cytomixis affects microsporogenesis in Sesamum indicum L. (Pedaliaceae). Ontogenez 43(4):261–267
CAS PubMed Google Scholar
- During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X, Bland RJ, Klugmann M et al (2003) Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med 9(9):1173–1179
Article CAS PubMed Google Scholar
- Bassil F, Fernagut PO, Bezard E, Meissner WG (2014) Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol 118:1–18
Article CAS PubMed Google Scholar
- Rampersaud N, Harkavyi A, Giordano G, Lever R, Whitton J, Whitton P (2012) Exendin-4 reverts behavioural and neurochemical dysfunction in a pre-motor rodent model of Parkinson's disease with noradrenergic deficit. Br J Pharmacol 167(7):1467–1479
Article CAS PubMed PubMed Central Google Scholar
- Li Y, Chigurupati S, Holloway HW, Mughal M, Tweedie D, Bruestle DA, Mattson MP, Wang Y et al (2012) Exendin-4 ameliorates motor neuron degeneration in cellular and animal models of amyotrophic lateral sclerosis. PLoS One 7(2):e32008
Article CAS PubMed PubMed Central Google Scholar
- Chen S, Liu AR, An FM, Yao WB, Gao XD (2012) Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer’s disease by exendin-4. Age (Dordr) 34(5):1211–1224
Article CAS Google Scholar
- Eakin K, Li Y, Chiang YH, Hoffer BJ, Rosenheim H, Greig NH, Miller JP (2013) Exendin-4 ameliorates traumatic brain injury-induced cognitive impairment in rats. PLoS One 8(12):e82016
Article PubMed PubMed Central Google Scholar
- Kim S, Moon M, Park S (2009) Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J Endocrinol 202(3):431–439
Article CAS PubMed Google Scholar
- Darsalia V, Mansouri S, Ortsater H, Olverling A, Nozadze N, Kappe C, Iverfeldt K, Tracy LM et al (2012) Glucagon-like peptide-1 receptor activation reduces ischaemic brain damage following stroke in type 2 diabetic rats. Clin Sci 122(10):473–483
Article CAS PubMed PubMed Central Google Scholar
- Munoz-Culla M, Irizar H, Otaegui D (2013) The genetics of multiple sclerosis: review of current and emerging candidates. Appl Clin Genet 6:63–73
CAS PubMed PubMed Central Google Scholar
- Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202(1–2):13–23
Article CAS PubMed Google Scholar
- di Penta A, Moreno B, Reix S, Fernandez-Diez B, Villanueva M, Errea O, Escala N, Vandenbroeck K et al (2013) Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation. PLoS One 8(2):e54722
Article PubMed PubMed Central Google Scholar
- Renno T, Krakowski M, Piccirillo C, Lin JY, Owens T (1995) TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J Immunol 154(2):944–953
CAS PubMed Google Scholar
- Rasmussen S, Imitola J, Ayuso-Sacido A, Wang Y, Starossom SC, Kivisakk P, Zhu B, Meyer M et al (2011) Reversible neural stem cell niche dysfunction in a model of multiple sclerosis. Ann Neurol 69(5):878–891
Article CAS PubMed PubMed Central Google Scholar
- Popovic N, Schubart A, Goetz BD, Zhang SC, Linington C, Duncan ID (2002) Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 51(2):215–223
Article CAS PubMed Google Scholar
- Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW, Noguchi K, Teo ST, Yung YC et al (2011) FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. P Natl Acad Sci USA 108(2):751–756
Article CAS Google Scholar
- Jackson SJ, Giovannoni G, Baker D (2011) Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflamm 8:76
Article CAS Google Scholar
- Gong N, Xiao Q, Zhu B, Zhang CY, Wang YC, Fan H, Ma AN, Wang YX (2014) Activation of spinal glucagon-like peptide-1 receptors specifically suppresses pain hypersensitivity. J Neurosci 34(15):5322–5334
Article PubMed Google Scholar
- Kappe C, Tracy LM, Patrone C, Iverfeldt K, Sjoholm A (2012) GLP-1 secretion by microglial cells and decreased CNS expression in obesity. J Neuroinflamm 9:276
Article CAS Google Scholar
- Darsalia V, Hua S, Larsson M, Mallard C, Nathanson D, Nystrom T, Sjoholm A, Johansson ME et al (2014) Exendin-4 reduces ischemic brain injury in normal and aged type 2 diabetic mice and promotes microglial M2 polarization. PLoS One 9(8):e103114
Article PubMed PubMed Central Google Scholar
- Sharma A, Sorenby A, Wernerson A, Efendic S, Kumagai-Braesch M, Tibell A (2006) Exendin-4 treatment improves metabolic control after rat islet transplantation to athymic mice with streptozotocin-induced diabetes. Diabetologia 49(6):1247–1253
Article CAS PubMed Google Scholar
- Gaire BP, Kwon OW, Park SH, Chun KH, Kim SY, Shin DY, Choi JW (2015) Neuroprotective effect of 6-paradol in focal cerebral ischemia involves the attenuation of neuroinflammatory responses in activated microglia. PLoS One 10(3):e0120203
Article PubMed PubMed Central Google Scholar
- Gao Z, Tsirka SE (2011) Animal models of MS reveal multiple roles of microglia in disease pathogenesis. Neurol Res Int 2011:383087
PubMed PubMed Central Google Scholar
- Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald GH, Gerlitz B et al (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451(7182):1076–1081
Article CAS PubMed Google Scholar
- Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508
Article CAS PubMed Google Scholar
- Mc Guire C, Prinz M, Beyaert R, van Loo G (2013) Nuclear factor kappa B (NF-kappaB) in multiple sclerosis pathology. Trends Mol Med 19(10):604–613
Article CAS PubMed Google Scholar
- Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12:86
Article CAS PubMed PubMed Central Google Scholar
- Campos RV, Lee YC, Drucker DJ (1994) Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology 134(5):2156–2164
Article CAS PubMed Google Scholar
- Kagansky N, Levy S, Knobler H (2001) The role of hyperglycemia in acute stroke. Arch Neurol 58(8):1209–1212
Article CAS PubMed Google Scholar
- Li Y, Tweedie D, Mattson MP, Holloway HW, Greig NH (2010) Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J Neurochem 113(6):1621–1631
CAS PubMed PubMed Central Google Scholar
- Perry T, Holloway HW, Weerasuriya A, Mouton PR, Duffy K, Mattison JA, Greig NH (2007) Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy. Exp Neurol 203(2):293–301
Article CAS PubMed Google Scholar
- Cork SC, Richards JE, Holt MK, Gribble FM, Reimann F, Trapp S (2015) Distribution and characterisation of glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol Metab 4(10):718–731
Article CAS PubMed PubMed Central Google Scholar
- Chowen JA, de Fonseca FR, Alvarez E, Navarro M, Garcia-Segura LM, Blazquez E (1999) Increased glucagon-like peptide-1 receptor expression in glia after mechanical lesion of the rat brain. Neuropeptides 33(3):212–215
Article CAS PubMed Google Scholar
- Darsalia V, Ortsater H, Olverling A, Darlof E, Wolbert P, Nystrom T, Klein T, Sjoholm A et al (2013) The DPP-4 inhibitor linagliptin counteracts stroke in the normal and diabetic mouse brain: a comparison with glimepiride. Diabetes 62(4):1289–1296
Article CAS PubMed PubMed Central Google Scholar
- Hamilton A, Holscher C (2009) Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. Neuroreport 20(13):1161–1166
Article CAS PubMed Google Scholar
- Li Y, Perry T, Kindy MS, Harvey BK, Tweedie D, Holloway HW, Powers K, Shen H et al (2009) GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and parkinsonism. P Natl Acad Sci USA 106(4):1285–1290
Article CAS Google Scholar
- Teramoto S, Miyamoto N, Yatomi K, Tanaka Y, Oishi H, Arai H, Hattori N, Urabe T (2011) Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia. J Cerebr Blood F Met 31(8):1696–1705
Article CAS Google Scholar
- Lee CH, Yan B, Yoo KY, Choi JH, Kwon SH, Her S, Sohn Y, Hwang IK et al (2011) Ischemia-induced changes in glucagon-like peptide-1 receptor and neuroprotective effect of its agonist, exendin-4, in experimental transient cerebral ischemia. J Neurosci Res 89(7):1103–1113
Article CAS PubMed Google Scholar
- Ohshima RHK, Holsher C, Seki K (2015) Age-related decrease in glucagon- like peptide-1 in mouse prefrontal cortext but not in hippocampus despite the preservation of its receptor. Am J BioScience 1:11–27
Article Google Scholar
- Lee J, Hong SW, Chae SW, Kim DH, Choi JH, Bae JC, Park SE, Rhee EJ et al (2012) Exendin-4 improves steatohepatitis by increasing Sirt1 expression in high-fat diet-induced obese C57BL/6J mice. PLoS One 7(2):e31394
Article CAS PubMed PubMed Central Google Scholar
- Foster CA, Mechtcheriakova D, Storch MK, Balatoni B, Howard LM, Bornancin F, Wlachos A, Sobanov J et al (2009) FTY720 rescue therapy in the dark agouti rat model of experimental autoimmune encephalomyelitis: expression of central nervous system genes and reversal of blood-brain-barrier damage. Brain Pathol 19(2):254–266
Article CAS PubMed Google Scholar
- McClean PL, Parthsarathy V, Faivre E, Holscher C (2011) The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease. J Neurosci 31(17):6587–6594
Article CAS PubMed Google Scholar
- Himeno T, Kamiya H, Naruse K, Harada N, Ozaki N, Seino Y, Shibata T, Kondo M et al (2011) Beneficial effects of exendin-4 on experimental polyneuropathy in diabetic mice. Diabetes 60(9):2397–2406
Article CAS PubMed PubMed Central Google Scholar
- Iwai T, Sawabe T, Tanimitsu K, Suzuki M, Sasaki-Hamada S, Oka J (2014) Glucagon-like peptide-1 protects synaptic and learning functions from neuroinflammation in rodents. J Neurosci Res 92(4):446–454
Article CAS PubMed Google Scholar
- Parthsarathy V, Holscher C (2013) The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain. Eur J Pharmacol 700(1–3):42–50
Article CAS PubMed Google Scholar
- Kuroki T, Tanaka R, Shimada Y, Yamashiro K, Ueno Y, Shimura H, Urabe T, Hattori N (2016) Exendin-4 inhibits matrix metalloproteinase-9 activation and reduces infarct growth after focal cerebral ischemia in hyperglycemic mice. Stroke 47(5):1328–1335
Article CAS PubMed Google Scholar
- Tam WY, Ma CH (2014) Bipolar/rod-shaped microglia are proliferating microglia with distinct M1/M2 phenotypes. Sci Rep-UK 4:7279
Article CAS Google Scholar
- Crain JM, Nikodemova M, Watters JJ (2013) Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J Neurosci Res 91(9):1143–1151
Article CAS PubMed PubMed Central Google Scholar
- Xia CY, Zhang S, Gao Y, Wang ZZ, Chen NH (2015) Selective modulation of microglia polarization to M2 phenotype for stroke treatment. Int Immunopharmacol 25(2):377–382
Article CAS PubMed Google Scholar
- Ponomarev ED, Shriver LP, Maresz K, Dittel BN (2005) Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 81(3):374–389
Article CAS PubMed Google Scholar
- Guo C, Huang T, Chen A, Chen X, Wang L, Shen F, Gu X (2016) Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Braz J Med Biol Res 49(12):e5826
Article CAS PubMed PubMed Central Google Scholar
- Lee YS, Jun HS (2016) Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediat Inflamm 2016:3094642
Google Scholar
- Jia Y, Jing J, Bai Y, Li Z, Liu L, Luo J, Liu M, Chen H (2011) Amelioration of experimental autoimmune encephalomyelitis by plumbagin through down-regulation of JAK-STAT and NF-kappaB signaling pathways. PLoS One 6(10):e27006
Article CAS PubMed PubMed Central Google Scholar
- Yin QQ, Liu CX, Wu YL, Wu SF, Wang Y, Zhang X, Hu XJ, Pu JX et al (2013) Preventive and therapeutic effects of adenanthin on experimental autoimmune encephalomyelitis by inhibiting NF-kappaB signaling. J Immunol 191(5):2115–2125
Article CAS PubMed Google Scholar