Dirichlet Divisor Problem (original) (raw)
Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology
Alphabetical Index New in MathWorld
Let the divisor function be the number of divisors of (including itself). For a prime , . In general,
where is the Euler-Mascheroni constant. Dirichlet originally gave (Hardy and Wright 1979, p. 264; Hardy 1999, pp. 67-68), and Hardy and Landau showed in 1916 that (Hardy 1999, p. 81). The following table summarizes incremental progress on the upper limit (updating Hardy 1999, p. 81).
approx. | citation | |
---|---|---|
1/2 | 0.50000 | Dirichlet |
1/3 | 0.33333 | Voronoi (1903), Sierpiński (1906), van der Corput (1923) |
37/112 | 0.33036 | Littlewood and Walfisz (1925) |
33/100 | 0.33000 | van der Corput (1922) |
27/82 | 0.32927 | van der Corput (1928) |
15/46 | 0.32609 | |
12/37 | 0.32432 | Chen (1963), Kolesnik (1969) |
35/108 | 0.32407 | Kolesnik (1982) |
139/429 | 0.32401 | Kolesnik |
17/53 | 0.32075 | Vinogradov (1935) |
7/22 | 0.31818 | Iwaniec and Mozzochi (1988) |
23/73 | 0.31507 | Huxley (1993) |
131/416 | 0.31490 | Huxley (2003) |
See also
Divisor Function, Gauss's Circle Problem
Explore with Wolfram|Alpha
References
Bohr, H. and Cramér, H. "Ellipsoidprobleme." In "Die neuere Entwicklung der analytischen Zahlentheorie." Ch. IIC88 in Enzykl. d. Math. Wiss., Vol. 2, Part 3, Issue 2 II C 8, 823-824, 1922.Chen, J.-R. "The Lattice-Points in a Circle." Sci. Sinica 12, 633-649, 1963.Graham, S. W. and Kolesnik, G. Van Der Corput's Method of Exponential Sums. Cambridge, England: Cambridge University Press, 1991.Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.Huxley, M. N. "Exponential Sums and Lattice Points."Proc. London Math. Soc. 60, 471-502, 1990.Huxley, M. N. "Corrigenda: 'Exponential Sums and Lattice Points.' " Proc. London Math. Soc. 66, 70, 1993.Huxley, M. N. "Exponential Sums and Lattice Points. II." Proc. London Math. Soc. 66, 279-301, 1993.Huxley, M. N. "Exponential Sums and Lattice Points III."Proc. London Math. Soc. 87, 5910-609, 2003.Iwaniec, H. and Mozzochi, C. J. "On the Divisor and Circle Problem." J. Numb. Th. 29, 60-93, 1988.Kolesnik, G. A. "An Improvement of the Remainder Term in the Divisor Problem." Mat. Zametki 6, 545-554, 1969. English translation in Math. Notes 6, 784-791, 1969.Kolesnik, G. "On the Order of and ." Pacific J. Math. 98, 107-122, 1982.Littlewood, J. E. and Walfisz, A. "The Lattice Points of a Circle. (With a Note by Prof. E. Landau.)." Proc. Roy. Soc. London (A) 106, 478-488, 1925.van der Corput, J. G. "Zum Teilerproblem." Math. Ann. 98, 697-716, 1928.Vinogradov, I. M. "Anzahl der Gitterpunkte in der Kugel." Traveaux Inst. Phys.-Math. Stekloff (Leningrade) 9, 17-38, 1935. [Russian].
Referenced on Wolfram|Alpha
Cite this as:
Weisstein, Eric W. "Dirichlet Divisor Problem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/DirichletDivisorProblem.html