Negative Binomial Series (original) (raw)

TOPICS

Search Close

Search

Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology

Alphabetical Index New in MathWorld


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

The series which arises in the binomial theorem for negative integer -n,

(x+a)^(-n) = sum_(k=0)^(infty)(-n; k)x^ka^(-n-k) (1)
= sum_(k=0)^(infty)(-1)^k(n+k-1; k)x^ka^(-n-k) (2)

for |x|<a.

For a=1, the negative binomial series simplifies to

 (x+1)^(-n)=1-nx+1/2n(n+1)x^2-1/6n(n+1)(n+2)x^3+.... (3)

See also

Binomial Series, Binomial Theorem

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

Cite this as:

Weisstein, Eric W. "Negative Binomial Series." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/NegativeBinomialSeries.html

Subject classifications