The heterotrimeric G protein Go2 regulates catecholamine uptake by secretory vesicles (original) (raw)
Abstract
Secretory vesicles store neurotransmitters that are released by exocytosis. Their membrane contains transporters responsible for transmitter loading that are driven by an electrochemical proton gradient across the vesicle membrane. We have now examined whether uptake of noradrenaline is regulated by heterotrimeric G proteins. In streptolysin O-permeabilized PC 12 cells, GTP-analogues and AlF4- inhibited noradrenaline uptake, an effect that was sensitive to treatment with pertussis toxin. Inhibition of uptake was prevented by Galphao-specific antibodies and mimicked by purified activated Galphao2. No effect was seen when Galphao2 in its inactive GDP-bound form or purified activated Galphao1, Galphai1 and Galphai2 were tested. Down-regulation of uptake remained unchanged when exocytosis was inhibited by the light chain of tetanus toxin. Vesicular acidification was not affected whereas binding of [3H]reserpine was reduced by GTPgammaS and Galphao2. These data suggest that the monoamine transporter rather than the vacuolar ATPase is affected. We conclude that catecholamine uptake is controlled by Galphao2, suggesting a novel function for heterotrimeric G proteins in the control of neurotransmitter storage.
Full Text
The Full Text of this article is available as a PDF (419.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahnert-Hilger G., Bräutigam M., Gratzl M. Ca2+-stimulated catecholamine release from alpha-toxin-permeabilized PC12 cells: biochemical evidence for exocytosis and its modulation by protein kinase C and G proteins. Biochemistry. 1987 Dec 1;26(24):7842–7848. doi: 10.1021/bi00398a046. [DOI] [PubMed] [Google Scholar]
- Ahnert-Hilger G., Dauzenroth M. E., Habermann E., Henschen A., Krieglstein K., Mauler F., Weller U. Chains and fragments of tetanus toxin, and their contribution to toxicity. J Physiol (Paris) 1990;84(3):229–236. [PubMed] [Google Scholar]
- Ahnert-Hilger G., Mach W., Föhr K. J., Gratzl M. Poration by alpha-toxin and streptolysin O: an approach to analyze intracellular processes. Methods Cell Biol. 1989;31:63–90. doi: 10.1016/s0091-679x(08)61602-7. [DOI] [PubMed] [Google Scholar]
- Ahnert-Hilger G., Wegenhorst U., Stecher B., Spicher K., Rosenthal W., Gratz M. Exocytosis from permeabilized bovine adrenal chromaffin cells is differently modulated by guanosine 5'-[gamma-thio]triphosphate and guanosine 5'-[beta gamma-imido]triphosphate. Evidence for the involvement of various guanine nucleotide-binding proteins. Biochem J. 1992 Jun 1;284(Pt 2):321–326. doi: 10.1042/bj2840321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aronin N., DiFiglia M. The subcellular localization of the G-protein Gi alpha in the basal ganglia reveals its potential role in both signal transduction and vesicle trafficking. J Neurosci. 1992 Sep;12(9):3435–3444. doi: 10.1523/JNEUROSCI.12-09-03435.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhakdi S., Tranum-Jensen J. Damage to mammalian cells by proteins that form transmembrane pores. Rev Physiol Biochem Pharmacol. 1987;107:147–223. doi: 10.1007/BFb0027646. [DOI] [PubMed] [Google Scholar]
- Chabre M. Aluminofluoride and beryllofluoride complexes: a new phosphate analogs in enzymology. Trends Biochem Sci. 1990 Jan;15(1):6–10. doi: 10.1016/0968-0004(90)90117-t. [DOI] [PubMed] [Google Scholar]
- Chilcote T. J., Galli T., Mundigl O., Edelmann L., McPherson P. S., Takei K., De Camilli P. Cellubrevin and synaptobrevins: similar subcellular localization and biochemical properties in PC12 cells. J Cell Biol. 1995 Apr;129(1):219–231. doi: 10.1083/jcb.129.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards R. H. The transport of neurotransmitters into synaptic vesicles. Curr Opin Neurobiol. 1992 Oct;2(5):586–594. doi: 10.1016/0959-4388(92)90023-e. [DOI] [PubMed] [Google Scholar]
- Hay J. C., Martin T. F. Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. J Cell Biol. 1992 Oct;119(1):139–151. doi: 10.1083/jcb.119.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hell J. W., Maycox P. R., Jahn R. Energy dependence and functional reconstitution of the gamma-aminobutyric acid carrier from synaptic vesicles. J Biol Chem. 1990 Feb 5;265(4):2111–2117. [PubMed] [Google Scholar]
- Herlitze S., Garcia D. E., Mackie K., Hille B., Scheuer T., Catterall W. A. Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature. 1996 Mar 21;380(6571):258–262. doi: 10.1038/380258a0. [DOI] [PubMed] [Google Scholar]
- Ikeda S. R. Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature. 1996 Mar 21;380(6571):255–258. doi: 10.1038/380255a0. [DOI] [PubMed] [Google Scholar]
- Jakobs K. H., Aktories K., Schultz G. Mechanism of pertussis toxin action on the adenylate cyclase system. Inhibition of the turn-on reaction of the inhibitory regulatory site. Eur J Biochem. 1984 Apr 2;140(1):177–181. doi: 10.1111/j.1432-1033.1984.tb08083.x. [DOI] [PubMed] [Google Scholar]
- Johnson R. G., Jr Accumulation of biological amines into chromaffin granules: a model for hormone and neurotransmitter transport. Physiol Rev. 1988 Jan;68(1):232–307. doi: 10.1152/physrev.1988.68.1.232. [DOI] [PubMed] [Google Scholar]
- Kalkbrenner F., Dippel E., Wittig B., Schultz G. Specificity of interaction between receptor and G protein: use of antisense techniques to relate G-protein subunits to function. Biochim Biophys Acta. 1996 Nov 8;1314(1-2):125–139. doi: 10.1016/s0167-4889(96)00072-9. [DOI] [PubMed] [Google Scholar]
- Krantz D. E., Peter D., Liu Y., Edwards R. H. Phosphorylation of a vesicular monoamine transporter by casein kinase II. J Biol Chem. 1997 Mar 7;272(10):6752–6759. doi: 10.1074/jbc.272.10.6752. [DOI] [PubMed] [Google Scholar]
- Liu Y., Edwards R. H. The role of vesicular transport proteins in synaptic transmission and neural degeneration. Annu Rev Neurosci. 1997;20:125–156. doi: 10.1146/annurev.neuro.20.1.125. [DOI] [PubMed] [Google Scholar]
- Liu Y., Peter D., Roghani A., Schuldiner S., Privé G. G., Eisenberg D., Brecha N., Edwards R. H. A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell. 1992 Aug 21;70(4):539–551. doi: 10.1016/0092-8674(92)90425-c. [DOI] [PubMed] [Google Scholar]
- Maycox P. R., Hell J. W., Jahn R. Amino acid neurotransmission: spotlight on synaptic vesicles. Trends Neurosci. 1990 Mar;13(3):83–87. doi: 10.1016/0166-2236(90)90178-d. [DOI] [PubMed] [Google Scholar]
- Nakanishi N., Onozawa S., Matsumoto R., Hasegawa H., Yamada S. Cyclic AMP-dependent modulation of vesicular monoamine transport in pheochromocytoma cells. J Neurochem. 1995 Feb;64(2):600–607. doi: 10.1046/j.1471-4159.1995.64020600.x. [DOI] [PubMed] [Google Scholar]
- Nürnberg B., Ahnert-Hilger G. Potential roles of heterotrimeric G proteins of the endomembrane system. FEBS Lett. 1996 Jun 24;389(1):61–65. doi: 10.1016/0014-5793(96)00584-4. [DOI] [PubMed] [Google Scholar]
- Nürnberg B., Spicher K., Harhammer R., Bosserhoff A., Frank R., Hilz H., Schultz G. Purification of a novel G-protein alpha 0-subtype from mammalian brain. Biochem J. 1994 Jun 1;300(Pt 2):387–394. doi: 10.1042/bj3000387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peter D., Jimenez J., Liu Y., Kim J., Edwards R. H. The chromaffin granule and synaptic vesicle amine transporters differ in substrate recognition and sensitivity to inhibitors. J Biol Chem. 1994 Mar 11;269(10):7231–7237. [PubMed] [Google Scholar]
- Rudnick G., Steiner-Mordoch S. S., Fishkes H., Stern-Bach Y., Schuldiner S. Energetics of reserpine binding and occlusion by the chromaffin granule biogenic amine transporter. Biochemistry. 1990 Jan 23;29(3):603–608. doi: 10.1021/bi00455a002. [DOI] [PubMed] [Google Scholar]
- Schloss P., Püschel A. W., Betz H. Neurotransmitter transporters: new members of known families. Curr Opin Cell Biol. 1994 Aug;6(4):595–599. doi: 10.1016/0955-0674(94)90081-7. [DOI] [PubMed] [Google Scholar]
- Schuldiner S., Fishkes H., Kanner B. I. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3713–3716. doi: 10.1073/pnas.75.8.3713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spicher K., Nuernberg B., Jäger B., Rosenthal W., Schultz G. Heterogeneity of three electrophoretically distinct Go alpha-subunits in mammalian brain. FEBS Lett. 1992 Jul 28;307(2):215–218. doi: 10.1016/0014-5793(92)80770-h. [DOI] [PubMed] [Google Scholar]
- Stern-Bach Y., Greenberg-Ofrath N., Flechner I., Schuldiner S. Identification and purification of a functional amine transporter from bovine chromaffin granules. J Biol Chem. 1990 Mar 5;265(7):3961–3966. [PubMed] [Google Scholar]
- Stern-Bach Y., Keen J. N., Bejerano M., Steiner-Mordoch S., Wallach M., Findlay J. B., Schuldiner S. Homology of a vesicular amine transporter to a gene conferring resistance to 1-methyl-4-phenylpyridinium. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9730–9733. doi: 10.1073/pnas.89.20.9730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valenzuela D., Han X., Mende U., Fankhauser C., Mashimo H., Huang P., Pfeffer J., Neer E. J., Fishman M. C. G alpha(o) is necessary for muscarinic regulation of Ca2+ channels in mouse heart. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1727–1732. doi: 10.1073/pnas.94.5.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van der Kloot W. The regulation of quantal size. Prog Neurobiol. 1991;36(2):93–130. doi: 10.1016/0301-0082(91)90019-w. [DOI] [PubMed] [Google Scholar]
- Vitale N., Deloulme J. C., Thiersé D., Aunis D., Bader M. F. GAP-43 controls the availability of secretory chromaffin granules for regulated exocytosis by stimulating a granule-associated G0. J Biol Chem. 1994 Dec 2;269(48):30293–30298. [PubMed] [Google Scholar]
- Weller U., Müller L., Messner M., Palmer M., Valeva A., Tranum-Jensen J., Agrawal P., Biermann C., Döbereiner A., Kehoe M. A. Expression of active streptolysin O in Escherichia coli as a maltose-binding-protein--streptolysin-O fusion protein. The N-terminal 70 amino acids are not required for hemolytic activity. Eur J Biochem. 1996 Feb 15;236(1):34–39. doi: 10.1111/j.1432-1033.1996.00034.x. [DOI] [PubMed] [Google Scholar]
- Yelin R., Schuldiner S. The pharmacological profile of the vesicular monoamine transporter resembles that of multidrug transporters. FEBS Lett. 1995 Dec 18;377(2):201–207. doi: 10.1016/0014-5793(95)01346-6. [DOI] [PubMed] [Google Scholar]