A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml (original) (raw)

Abstract

The branched DNA hybridization assay has been improved by the inclusion of the novel nucleotides, isoC and isoG, in the amplification sequences to prevent non-specific hybridization. The novel isoC, isoG-containing amplification sequences have no detectable interaction with any natural DNA sequence. The control of non-specific hybridization in turn permits increased signal amplification. Addition of a 14 site preamplifier was found to increase the signal/noise ratio 8-fold. A set of 74 oligonucleotide probes was designed to the consensus HIV POL sequence. The detection limit of this new HIV branched DNA amplifier assay was approximately 50 molecules/ml. The assay was used to measure viral load in 87 plasma samples of HIV- infected patients on triple drug therapy whose RNA titers were <500 molecules/ml. In all 11 patients viral load eventually declined to below the detection limit with the new assay.

Full Text

The Full Text of this article is available as a PDF (82.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alter H. J., Sanchez-Pescador R., Urdea M. S., Wilber J. C., Lagier R. J., Di Bisceglie A. M., Shih J. W., Neuwald P. D. Evaluation of branched DNA signal amplification for the detection of hepatitis C virus RNA. J Viral Hepat. 1995;2(3):121–132. doi: 10.1111/j.1365-2893.1995.tb00017.x. [DOI] [PubMed] [Google Scholar]
  2. Bagasra O., Hauptman S. P., Lischner H. W., Sachs M., Pomerantz R. J. Detection of human immunodeficiency virus type 1 provirus in mononuclear cells by in situ polymerase chain reaction. N Engl J Med. 1992 May 21;326(21):1385–1391. doi: 10.1056/NEJM199205213262103. [DOI] [PubMed] [Google Scholar]
  3. Bronstein I., Voyta J. C., Thorpe G. H., Kricka L. J., Armstrong G. Chemiluminescent assay of alkaline phosphatase applied in an ultrasensitive enzyme immunoassay of thyrotropin. Clin Chem. 1989 Jul;35(7):1441–1446. [PubMed] [Google Scholar]
  4. Cao Y., Qin L., Zhang L., Safrit J., Ho D. D. Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. N Engl J Med. 1995 Jan 26;332(4):201–208. doi: 10.1056/NEJM199501263320401. [DOI] [PubMed] [Google Scholar]
  5. Collins M. L., Zayati C., Detmer J. J., Daly B., Kolberg J. A., Cha T. A., Irvine B. D., Tucker J., Urdea M. S. Preparation and characterization of RNA standards for use in quantitative branched DNA hybridization assays. Anal Biochem. 1995 Mar 20;226(1):120–129. doi: 10.1006/abio.1995.1199. [DOI] [PubMed] [Google Scholar]
  6. Danner S. A., Carr A., Leonard J. M., Lehman L. M., Gudiol F., Gonzales J., Raventos A., Rubio R., Bouza E., Pintado V. A short-term study of the safety, pharmacokinetics, and efficacy of ritonavir, an inhibitor of HIV-1 protease. European-Australian Collaborative Ritonavir Study Group. N Engl J Med. 1995 Dec 7;333(23):1528–1533. doi: 10.1056/NEJM199512073332303. [DOI] [PubMed] [Google Scholar]
  7. Detmer J., Lagier R., Flynn J., Zayati C., Kolberg J., Collins M., Urdea M., Sánchez-Pescador R. Accurate quantification of hepatitis C virus (HCV) RNA from all HCV genotypes by using branched-DNA technology. J Clin Microbiol. 1996 Apr;34(4):901–907. doi: 10.1128/jcm.34.4.901-907.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ellington A. D., Szostak J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990 Aug 30;346(6287):818–822. doi: 10.1038/346818a0. [DOI] [PubMed] [Google Scholar]
  9. Haase A. T., Retzel E. F., Staskus K. A. Amplification and detection of lentiviral DNA inside cells. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4971–4975. doi: 10.1073/pnas.87.13.4971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hendricks D. A., Stowe B. J., Hoo B. S., Kolberg J., Irvine B. D., Neuwald P. D., Urdea M. S., Perrillo R. P. Quantitation of HBV DNA in human serum using a branched DNA (bDNA) signal amplification assay. Am J Clin Pathol. 1995 Nov;104(5):537–546. doi: 10.1093/ajcp/104.5.537. [DOI] [PubMed] [Google Scholar]
  11. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
  12. Joyce G. F. Amplification, mutation and selection of catalytic RNA. Gene. 1989 Oct 15;82(1):83–87. doi: 10.1016/0378-1119(89)90033-4. [DOI] [PubMed] [Google Scholar]
  13. Kern D., Collins M., Fultz T., Detmer J., Hamren S., Peterkin J. J., Sheridan P., Urdea M., White R., Yeghiazarian T. An enhanced-sensitivity branched-DNA assay for quantification of human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol. 1996 Dec;34(12):3196–3202. doi: 10.1128/jcm.34.12.3196-3202.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Komminoth P., Adams V., Long A. A., Roth J., Saremaslani P., Flury R., Schmid M., Heitz P. U. Evaluation of methods for hepatitis C virus detection in archival liver biopsies. Comparison of histology, immunohistochemistry, in-situ hybridization, reverse transcriptase polymerase chain reaction (RT-PCR) and in-situ RT-PCR. Pathol Res Pract. 1994 Nov;190(11):1017–1025. doi: 10.1016/s0344-0338(11)80896-4. [DOI] [PubMed] [Google Scholar]
  15. Lau J. Y., Davis G. L., Kniffen J., Qian K. P., Urdea M. S., Chan C. S., Mizokami M., Neuwald P. D., Wilber J. C. Significance of serum hepatitis C virus RNA levels in chronic hepatitis C. Lancet. 1993 Jun 12;341(8859):1501–1504. doi: 10.1016/0140-6736(93)90635-t. [DOI] [PubMed] [Google Scholar]
  16. Laurent-Puig P., Dussaix E., Altman C., Laval C., Stuyver L., Wilber J. C., Babany G., Chopineau S., Bedossa P., Brocheriou I. Host and viral characteristics affecting the response to interferon therapy in chronic hepatitis C. Eur J Gastroenterol Hepatol. 1995 Apr;7(4):335–340. [PubMed] [Google Scholar]
  17. Lidonnici K., Lane B., Nuovo G. J. Comparison of serologic analysis and in situ localization of PCR-amplified cDNA for the diagnosis of hepatitis C infection. Diagn Mol Pathol. 1995 Jun;4(2):98–107. doi: 10.1097/00019606-199506000-00005. [DOI] [PubMed] [Google Scholar]
  18. Markowitz M., Saag M., Powderly W. G., Hurley A. M., Hsu A., Valdes J. M., Henry D., Sattler F., La Marca A., Leonard J. M. A preliminary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection. N Engl J Med. 1995 Dec 7;333(23):1534–1539. doi: 10.1056/NEJM199512073332204. [DOI] [PubMed] [Google Scholar]
  19. Mellors J. W., Kingsley L. A., Rinaldo C. R., Jr, Todd J. A., Hoo B. S., Kokka R. P., Gupta P. Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Ann Intern Med. 1995 Apr 15;122(8):573–579. doi: 10.7326/0003-4819-122-8-199504150-00003. [DOI] [PubMed] [Google Scholar]
  20. Mellors J. W., Rinaldo C. R., Jr, Gupta P., White R. M., Todd J. A., Kingsley L. A. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science. 1996 May 24;272(5265):1167–1170. doi: 10.1126/science.272.5265.1167. [DOI] [PubMed] [Google Scholar]
  21. Nuovo G. J. In situ PCR: protocols and applications. PCR Methods Appl. 1995 Feb;4(4):S151–S167. doi: 10.1101/gr.4.4.s151. [DOI] [PubMed] [Google Scholar]
  22. Orito E., Mizokami M., Nakano T., Terashima H., Nojiri O., Sakakibara K., Mizuno M., Ogino M., Nakamura M., Matsumoto Y. Serum hepatitis C virus RNA level as a predictor of subsequent response to interferon-alpha therapy in Japanese patients with chronic hepatitis C. J Med Virol. 1994 Dec;44(4):410–414. doi: 10.1002/jmv.1890440418. [DOI] [PubMed] [Google Scholar]
  23. Pachl C., Todd J. A., Kern D. G., Sheridan P. J., Fong S. J., Stempien M., Hoo B., Besemer D., Yeghiazarian T., Irvine B. Rapid and precise quantification of HIV-1 RNA in plasma using a branched DNA signal amplification assay. J Acquir Immune Defic Syndr Hum Retrovirol. 1995 Apr 15;8(5):446–454. doi: 10.1097/00042560-199504120-00003. [DOI] [PubMed] [Google Scholar]
  24. Perelson A. S., Neumann A. U., Markowitz M., Leonard J. M., Ho D. D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996 Mar 15;271(5255):1582–1586. doi: 10.1126/science.271.5255.1582. [DOI] [PubMed] [Google Scholar]
  25. Piccirilli J. A., Krauch T., Moroney S. E., Benner S. A. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature. 1990 Jan 4;343(6253):33–37. doi: 10.1038/343033a0. [DOI] [PubMed] [Google Scholar]
  26. Ried T., Landes G., Dackowski W., Klinger K., Ward D. C. Multicolor fluorescence in situ hybridization for the simultaneous detection of probe sets for chromosomes 13, 18, 21, X and Y in uncultured amniotic fluid cells. Hum Mol Genet. 1992 Aug;1(5):307–313. doi: 10.1093/hmg/1.5.307. [DOI] [PubMed] [Google Scholar]
  27. Running J. A., Urdea M. S. A procedure for productive coupling of synthetic oligonucleotides to polystyrene microtiter wells for hybridization capture. Biotechniques. 1990 Mar;8(3):276–279. [PubMed] [Google Scholar]
  28. Schaap A. P., Akhavan H., Romano L. J. Chemiluminescent substrates for alkaline phosphatase: application to ultrasensitive enzyme-linked immunoassays and DNA probes. Clin Chem. 1989 Sep;35(9):1863–1864. [PubMed] [Google Scholar]
  29. Seeman N. C. Construction of three-dimensional stick figures from branched DNA. DNA Cell Biol. 1991 Sep;10(7):475–486. doi: 10.1089/dna.1991.10.475. [DOI] [PubMed] [Google Scholar]
  30. Seeman N. C. De novo design of sequences for nucleic acid structural engineering. J Biomol Struct Dyn. 1990 Dec;8(3):573–581. doi: 10.1080/07391102.1990.10507829. [DOI] [PubMed] [Google Scholar]
  31. Switzer C. Y., Moroney S. E., Benner S. A. Enzymatic recognition of the base pair between isocytidine and isoguanosine. Biochemistry. 1993 Oct 5;32(39):10489–10496. doi: 10.1021/bi00090a027. [DOI] [PubMed] [Google Scholar]
  32. Teo I. A., Shaunak S. Polymerase chain reaction in situ: an appraisal of an emerging technique. Histochem J. 1995 Sep;27(9):647–659. [PubMed] [Google Scholar]
  33. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]
  34. Urdea M. S., Warner B. D., Running J. A., Stempien M., Clyne J., Horn T. A comparison of non-radioisotopic hybridization assay methods using fluorescent, chemiluminescent and enzyme labeled synthetic oligodeoxyribonucleotide probes. Nucleic Acids Res. 1988 Jun 10;16(11):4937–4956. doi: 10.1093/nar/16.11.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yamada G., Takatani M., Kishi F., Takahashi M., Doi T., Tsuji T., Shin S., Tanno M., Urdea M. S., Kolberg J. A. Efficacy of interferon alfa therapy in chronic hepatitis C patients depends primarily on hepatitis C virus RNA level. Hepatology. 1995 Nov;22(5):1351–1354. [PubMed] [Google Scholar]
  36. Yamada O., Kraus G., Luznik L., Yu M., Wong-Staal F. A chimeric human immunodeficiency virus type 1 (HIV-1) minimal Rev response element-ribozyme molecule exhibits dual antiviral function and inhibits cell-cell transmission of HIV-1. J Virol. 1996 Mar;70(3):1596–1601. doi: 10.1128/jvi.70.3.1596-1601.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zaaijer H. L., ter Borg F., Cuypers H. T., Hermus M. C., Lelie P. N. Comparison of methods for detection of hepatitis B virus DNA. J Clin Microbiol. 1994 Sep;32(9):2088–2091. doi: 10.1128/jcm.32.9.2088-2091.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]