Stem cells: cross-talk and developmental programs (original) (raw)
Abstract
The thesis advanced in this essay is that stem cells-particularly those in the nervous system-are components in a series of inborn 'programs' that not only ensure normal development, but persist throughout life so as to maintain homeostasis in the face of perturbations-both small and great. These programs encode what has come to be called 'plasticity'. The stem cell is one of the repositories of this plasticity. This review examines the evidence that interaction between the neural stem cell (as a prototypical somatic stem cell) and the developing or injured brain is a dynamic, complex, ongoing reciprocal set of interactions where both entities are constantly in flux. We suggest that this interaction can be viewed almost from a 'systems biology' vantage point. We further advance the notion that clones of exogenous stem cells in transplantation paradigms may not only be viewed for their therapeutic potential, but also as biological tools for 'interrogating' the normal or abnormal central nervous system environment, indicating what salient cues (among the many present) are actually guiding the expression of these 'programs'; in other words, using the stem cell as a 'reporter cell'. Based on this type of analysis, we suggest some of the relevant molecular pathways responsible for this 'cross-talk' which, in turn, lead to proliferation, migration, cell genesis, trophic support, protection, guidance, detoxification, rescue, etc. This type of developmental insight, we propose, is required for the development of therapeutic strategies for neurodegenerative disease and other nervous system afflictions in humans. Understanding the relevant molecular pathways of stem cell repair phenotype should be a priority, in our view, for the entire stem cell field.
Full Text
The Full Text of this article is available as a PDF (2.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arvidsson Andreas, Collin Tove, Kirik Deniz, Kokaia Zaal, Lindvall Olle. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002 Aug 5;8(9):963–970. doi: 10.1038/nm747. [DOI] [PubMed] [Google Scholar]
- Auerbach J. M., Eiden M. V., McKay R. D. Transplanted CNS stem cells form functional synapses in vivo. Eur J Neurosci. 2000 May;12(5):1696–1704. doi: 10.1046/j.1460-9568.2000.00067.x. [DOI] [PubMed] [Google Scholar]
- Flax J. D., Aurora S., Yang C., Simonin C., Wills A. M., Billinghurst L. L., Jendoubi M., Sidman R. L., Wolfe J. H., Kim S. U. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol. 1998 Nov;16(11):1033–1039. doi: 10.1038/3473. [DOI] [PubMed] [Google Scholar]
- Himes B. T., Liu Y., Solowska J. M., Snyder E. Y., Fischer I., Tessler A. Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke's nucleus neurons after spinal cord hemisection in adult rats. J Neurosci Res. 2001 Sep 15;65(6):549–564. doi: 10.1002/jnr.1185. [DOI] [PubMed] [Google Scholar]
- Liu Y., Himes B. T., Solowska J., Moul J., Chow S. Y., Park K. I., Tessler A., Murray M., Snyder E. Y., Fischer I. Intraspinal delivery of neurotrophin-3 using neural stem cells genetically modified by recombinant retrovirus. Exp Neurol. 1999 Jul;158(1):9–26. doi: 10.1006/exnr.1999.7079. [DOI] [PubMed] [Google Scholar]
- Lu P., Jones L. L., Snyder E. Y., Tuszynski M. H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol. 2003 Jun;181(2):115–129. doi: 10.1016/s0014-4886(03)00037-2. [DOI] [PubMed] [Google Scholar]
- Magavi S. S., Leavitt B. R., Macklis J. D. Induction of neurogenesis in the neocortex of adult mice. Nature. 2000 Jun 22;405(6789):951–955. doi: 10.1038/35016083. [DOI] [PubMed] [Google Scholar]
- Ourednik Jitka, Ourednik Václav, Lynch William P., Schachner Melitta, Snyder Evan Y. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol. 2002 Oct 15;20(11):1103–1110. doi: 10.1038/nbt750. [DOI] [PubMed] [Google Scholar]
- Ourednik V., Ourednik J., Flax J. D., Zawada W. M., Hutt C., Yang C., Park K. I., Kim S. U., Sidman R. L., Freed C. R. Segregation of human neural stem cells in the developing primate forebrain. Science. 2001 Jul 26;293(5536):1820–1824. doi: 10.1126/science.1060580. [DOI] [PubMed] [Google Scholar]
- Ourednik V., Ourednik J., Park K. I., Snyder E. Y. Neural stem cells -- a versatile tool for cell replacement and gene therapy in the central nervous system. Clin Genet. 1999 Oct;56(4):267–278. doi: 10.1034/j.1399-0004.1999.560403.x. [DOI] [PubMed] [Google Scholar]
- Park K. I., Liu S., Flax J. D., Nissim S., Stieg P. E., Snyder E. Y. Transplantation of neural progenitor and stem cells: developmental insights may suggest new therapies for spinal cord and other CNS dysfunction. J Neurotrauma. 1999 Aug;16(8):675–687. doi: 10.1089/neu.1999.16.675. [DOI] [PubMed] [Google Scholar]
- Park Kook In, Teng Yang D., Snyder Evan Y. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol. 2002 Oct 15;20(11):1111–1117. doi: 10.1038/nbt751. [DOI] [PubMed] [Google Scholar]
- Reynolds B. A., Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992 Mar 27;255(5052):1707–1710. doi: 10.1126/science.1553558. [DOI] [PubMed] [Google Scholar]
- Rosario C. M., Yandava B. D., Kosaras B., Zurakowski D., Sidman R. L., Snyder E. Y. Differentiation of engrafted multipotent neural progenitors towards replacement of missing granule neurons in meander tail cerebellum may help determine the locus of mutant gene action. Development. 1997 Nov;124(21):4213–4224. doi: 10.1242/dev.124.21.4213. [DOI] [PubMed] [Google Scholar]
- Ryder E. F., Snyder E. Y., Cepko C. L. Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. J Neurobiol. 1990 Mar;21(2):356–375. doi: 10.1002/neu.480210209. [DOI] [PubMed] [Google Scholar]
- Snyder E. Y., Deitcher D. L., Walsh C., Arnold-Aldea S., Hartwieg E. A., Cepko C. L. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell. 1992 Jan 10;68(1):33–51. doi: 10.1016/0092-8674(92)90204-p. [DOI] [PubMed] [Google Scholar]
- Snyder E. Y., Taylor R. M., Wolfe J. H. Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature. 1995 Mar 23;374(6520):367–370. doi: 10.1038/374367a0. [DOI] [PubMed] [Google Scholar]
- Suhonen J. O., Peterson D. A., Ray J., Gage F. H. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature. 1996 Oct 17;383(6601):624–627. doi: 10.1038/383624a0. [DOI] [PubMed] [Google Scholar]
- Teng Yang D., Lavik Erin B., Qu Xianlu, Park Kook I., Ourednik Jitka, Zurakowski David, Langer Robert, Snyder Evan Y. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A. 2002 Feb 26;99(5):3024–3029. doi: 10.1073/pnas.052678899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yandava B. D., Billinghurst L. L., Snyder E. Y. "Global" cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7029–7034. doi: 10.1073/pnas.96.12.7029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zlomanczuk Piotr, Mrugala Maciej, de la Iglesia Horacio O., Ourednik Vaclav, Quesenberry Peter J., Snyder Evan Y., Schwartz William J. Transplanted clonal neural stem-like cells respond to remote photic stimulation following incorporation within the suprachiasmatic nucleus. Exp Neurol. 2002 Apr;174(2):162–168. doi: 10.1006/exnr.2001.7857. [DOI] [PubMed] [Google Scholar]